
App Distribution Guide

Contents

About App Distribution 10
At a Glance 10

Enroll in an Apple Developer Program to Distribute Your App 11
Generate Certificates and Register Your Devices 11
Add Store Capabilities to Your App 11
Prepare Your App for Distribution 12
Test iOS Apps Across Numerous Devices 12
Submit and Release Your App 12

How to Use This Document 13
See Also 13

Enrolling in an Apple Developer Program and Accessing Its Tools 15
Enrolling in an Apple Developer Program 15

You Enroll as an Individual or a Company 15
You Can Join Multiple Teams 15
Emails from Apple Contain Further Instructions and Welcome You 16

Accessing Member Center and iTunes Connect 16
Accessing Member Center 16
Managing Your Certificates, Identifiers, and Profiles 17
Accessing iTunes Connect 22
Bookmarking the Web Tools 23

Recap 23

Creating Your Signing Certificates 24
About Code Signing 24
Requesting Signing Certificates 26

Verify Your Steps 30
Troubleshooting 35

Your Signing Certificates in Depth 35
Recap 37

Developing Apps Using the Team Provisioning Profile 38
About the Team Provisioning Profile 38
Adding Devices to Your Team Provisioning Profile 40

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

2

Registering and Provisioning an iOS Device Using Xcode 40
Registering and Provisioning a Mac Using Xcode 41
Verify Your Steps 43
Troubleshooting 48

Code Signing Your App Using the Team Provisioning Profile 49
Troubleshooting 51

Launching Your iOS App on the Device 52
Troubleshooting 53

Recap 53

Provisioning Your App for Store Technologies 54
About Development Provisioning Profiles 55
Before You Begin 56
Creating App IDs 57

Registering an App ID 57
Enabling Store Technologies 62
Creating Development Provisioning Profiles 63
Regenerating the Provisioning Profile 65

Regenerating the Team Provisioning Profile 66
Regenerating Provisioning Profiles Managed By You 67

Provisioning Your Development Devices 69
Refreshing Your Provisioning Profiles Using Xcode 70
Updating Provisioning Profiles on Your Device 70

Setting the Bundle ID to Match Your App ID 70
Signing Your App Using Your Development Provisioning Profile 71
Verify Your Steps 73

Verify Code Signing 73
Verify the App ID Settings in Member Center 73

Troubleshooting 76
Troubleshooting Code Signing Errors 76
Troubleshooting Failure to Launch 76

Development Provisioning Profiles in Depth 77
Recap 78

Configuring Store Technologies in Xcode and iTunes Connect 79
About Entitlements 79
Configuring iCloud 79

Enabling iCloud Entitlements 80
Configuring iCloud Key-Value Storage 81
Configuring iCloud Document Storage 81

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

3

Contents

Configuring Push Notifications 82
Creating Push Notification Client SSL Certificates 83
Installing Client SSL Certificates 86

Configuring Game Center 86
Configuring In-App Purchase 87
Configuring Passbook for iOS Apps 88
Configuring Data Protection for iOS Apps 89
Configuring Routing Apps for iOS Apps 90

Providing Routing Directions 91
Enabling Routing Apps in Xcode 91
Creating an App Record in iTunes Connect 91
Submitting a Binary to the Store 92
Uploading the Geographic Coverage File to iTunes Connect 92

Configuring Newsstand for iOS Apps 92
Verify Your Steps 92
Recap 97

Configuring Your Xcode Project for Distribution 98
About Bundle IDs 98
Before You Begin 100
Setting Properties When Creating Your Xcode Project 100
Configuring Application Target Settings 102

Setting the Mac Application Category 103
Setting the Bundle ID 103
Setting the Version Number and Build String 104
Setting the Target iOS Devices 105
Setting the Deployment Target 105

Adding App Icons and Launch Images 106
Setting App Icons 107
Creating and Setting iOS Launch Images 107

Configuring Entitlements 110
Configuring App Sandbox for Mac Apps 112
Editing the Information Property List 113

Setting the Copyright Key for Mac Apps 114
Specifying Build Settings 114

Setting Architectures for iOS Apps 115
Setting the Base SDK 116
Setting the Debug Information Format for Mac Apps 116

Recap 116

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

4

Contents

Beta Testing Your iOS App 117
About Ad Hoc Provisioning Profiles 117
Creating Your App Record in iTunes Connect 118
Registering Test Devices 118
Creating Distribution Certificates 119

Verify Your Steps 119
Creating Ad Hoc Provisioning Profiles 120
Archive and Validate Your App 121

Code Signing Your App 122
Review the Archive Scheme Settings 123
Creating and Validating an Archive 124

Creating an iOS App Store Package 127
Troubleshooting 128

Installing Your App on Test Devices 129
Soliciting Crash Reports from Testers 130
Ad Hoc Provisioning Profiles in Depth 131
Recap 131

Analyzing Crash Reports 132

Submitting Your App 133
About Store Provisioning Profiles 133
Before You Begin 134
Creating Distribution Certificates 135

Verify Your Steps 135
Creating Store Provisioning Profiles 136

Downloading the Distribution Provisioning Profile 138
Verify Your Steps 138

Archiving and Validating Your App 139
Code Signing Your App 139
Review the Archive Scheme Settings 140
Creating and Validating an Archive 141

Test the Mac Installer Package 143
Submitting Your App Using Xcode 144

Submitting Your iOS App 144
Submitting Your Mac App 147
Troubleshooting 149

Recap 149

Releasing and Updating Your App 150

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

5

Contents

Recap 150

Managing Your App in iTunes Connect 151
About iTunes Connect User Roles and Privileges 151
Adding iTunes Connect Users 153
Creating an App Record 153
Viewing the Status of Your App 153
Changing the Availability Date of Your App 154
Viewing Crash Reports 155
Viewing Customer Reviews 156
Creating New Versions of Your App 157
Recap 157

Best Practices for Maintaining Certificates and Provisioning Profiles 158
About Protecting Your Code Signing Identities 158
Exporting and Importing Certificates and Provisioning Profiles 159

Exporting Your Developer Profile 159
Importing Your Developer Profile 160

Removing Certificates from Your Keychain 161
Revoking Certificates 164
Replacing Expired Certificates 166
Installing Missing Intermediate Certificate Authorities 167
Requesting Additional Developer ID Certificates 168
Registering App IDs 169
Deleting App IDs 169
Registering Devices Using Member Center 170

Locating Device IDs 171
Registering Individual Devices 172
Registering Multiple Devices 173

Editing Provisioning Profiles 175
Installing and Removing Provisioning Profiles from Devices 177
Removing Provisioning Profiles from Your Team 179
Renewing Expired Provisioning Profiles 180
Downloading Provisioning Profiles from Member Center 180
Re-Creating Certificates and Updating Related Provisioning Profiles 181
Recap 183

Managing Your Team 184
About Apple Developer Program Team Roles and Privileges 184

Team Roles 184

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

6

Contents

Team Privileges 185
Team Agent 186

Before You Begin 187
Inviting Team Members and Assigning Roles 187

Inviting Team Members 187
Changing Team Roles 189

Approving Development Certificates 190
Registering Team Member Devices 192
Recap 193

Distributing Applications Outside the Mac App Store 194
Creating Developer ID-Signed Applications or Installer Packages 194

Requesting Developer ID Certificates 194
Code Signing Your Application 198
Exporting a Developer ID-Signed Application 199
Signing an Installer Package 201

Verify Your Steps 202
Enabling and Disabling Gatekeeper 202
Testing Gatekeeper Behavior 204

Recap 207

Troubleshooting 208
Certificate Issues 208

Your Provisioning Profile Doesn’t Appear in the Code Signing Identity Menu 208
Duplicate Provisioning Profile Appear in the Devices Organizer 208
Your Certificates Are Invalid Because You’re Missing Private Keys 208
Your Developer ID Certificates Are Invalid Because You’re Missing Private Keys 209
Your Certificates Are Invalid Because You’re Missing an Intermediate Certificate 209
Your Certificates Have Trust Issues 209
Your Certificates Have Expired 209
You’re Missing Signing Certificates 209
You Have Duplicate Certificates 210

Provisioning Issues 210
Xcode Cannot Install Your App on Your Development Device 210
Your Provisioning Profile Has Expired 210

Build and Code Signing Issues 210
Xcode Cannot Find Your Provisioning Profile 211
Xcode Doesn’t Trust Your Certificate 211
The Code Signing Identity Build Setting Doesn’t Match Any Certificates 211
Your Keychain Contains Duplicate Code Signing Identities 212

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

7

Contents

The App ID of Your Provisioning Profile Doesn’t Match Your App’s Bundle Identifier 213
Device Is Not Listed as a Run Destination 213

Debugging Information Issue 213
Xcode Displays the Unknown iOS Detected Dialog When You Connect a Device 213

Document Revision History 214

Glossary 215

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

8

Contents

Figures and Tables

Creating Your Signing Certificates 24
Table 2-1 Certificate types and names 36

Provisioning Your App for Store Technologies 54
Table 4-1 Tasks you perform to configure store technologies 56

Configuring Your Xcode Project for Distribution 98
Figure 6-1 Common uses for an app’s bundle ID 99

Managing Your App in iTunes Connect 151
Table 11-1 iTunes Connect roles and responsibilities 152
Table 11-2 Abbreviated list of iTunes Connect modules, including availability by role 152

Best Practices for Maintaining Certificates and Provisioning Profiles 158
Table 12-1 Team certificate revoking privileges 164

Managing Your Team 184
Table 13-1 Team roles 184
Table 13-2 Privileges assigned to each membership level 185

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

9

This guide explains how to develop, test, submit, and release your iOS and Mac apps. By understanding your
tools and the distribution process, you’ll be able to get your new app and updates to your customers faster.

To submit your app to the store, you use Xcode features and several web tools available only to members of
an Apple Developer Program. Even before you can develop with technologies, such as iCloud and Game Center,
you must join an Apple Developer Program. You should join a program even if you distribute your application
outside of the Mac App Store so that customers know your application comes from a known source.

Once you join a program, you can start using store services from your app, testing your app on devices, providing
marketing, sales, and contact information, and submitting versions of your app for approval. You iterate the
steps of this distribution process, as necessary, until your app is approved and released. Then you repeat some
of these steps again for each subsequent update.

At a Glance
This guide contains everything you need to distribute an app through the App Store or Mac App Store.

 ● Get step-by-step guidance on enrolling in an Apple Developer Program and building, testing, and submitting
your app.

 ● Configure technologies that are only available to apps submitted to the App Store or Mac App Store.

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

10

About App Distribution

 ● Verify that you've prepared your app correctly, and find troubleshooting techniques.

 ● Learn how to maintain your app and program assets after submission.

Enroll in an Apple Developer Program to Distribute Your App
To distribute your apps on the App Store and Mac App Store, or to sign apps that you distribute outside the
Mac App Store with a Developer ID, you must join an Apple Developer Program. As a member, you’ll have
access to the resources you need to configure technologies and to submit new apps and updates.

Related Chapter: “Enrolling in an Apple Developer Program and Accessing Its Tools” (page 15)

Generate Certificates and Register Your Devices
Apple implements an underlying security model to protect both user data and your app from being modified
and distributed without your knowledge. So throughout the development process, you create assets and enter
information that Apple will use to identify you, your devices, and your apps. During the lifetime of your
Developer Program membership, you’ll maintain these assets.

Related Chapters: “Creating Your Signing Certificates” (page 24), “Developing Apps Using the
Team Provisioning Profile” (page 38), “Best Practices for Maintaining Certificates and Provisioning
Profiles” (page 158)

Add Store Capabilities to Your App
The store provides advanced, integrated services for certain types of apps, such as games and Newsstand apps,
and for additional sources of revenue, such as In-App Purchase and iAd Network. All store technologies require
additional configuration—both during development and later, when you are submitting your app to the store.
Good examples are Game Center and iCloud. You’ll learn how to create a custom provisioning profile to start
adding these store capabilities to your app.

About App Distribution
At a Glance

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

11

Related Chapters: “Provisioning Your App for Store Technologies” (page 54), “Configuring Store
Technologies in Xcode and iTunes Connect” (page 79)

Prepare Your App for Distribution
Before you distribute your app for testing or submit it to the store for approval, you need to complete the
configuration of your Xcode project. The Xcode project contains required app icons and launch images, contains
additional entitlements for technologies you add, and determines which devices and operating system your
app supports.

Related Chapter: “Configuring Your Xcode Project for Distribution” (page 98)

Test iOS Apps Across Numerous Devices
If you have an iOS app, make sure you test it not only in iOS Simulator but on all the devices and releases that
your app supports. Testing on more than one kind of device ensures that your app operates exactly as you
thought it would, no matter which device it’s running on. You can register up to 100 devices for use for
development and testing. After testing an app yourself, distribute it to testers. You’ll first create a special
profile—an ad hoc provisioning profile—to ensure that test versions of your app are not copied and distributed
without your knowledge, and then collect device IDs from testers you’ve selected.

Related Chapters: “Beta Testing Your iOS App” (page 117), “Analyzing Crash Reports” (page 132)

Submit and Release Your App
Submitting your app to the store is a multistep process. First, you sign in to iTunes Connect and enter necessary
information to change the state of your app record to “Waiting for Upload” or later. If you are selling your app
on the store, you provide the information for your reimbursement on iTunes Connect, too. Double-check that
you have the certificates for distribution. Then create an archive and sign it with your distribution assets. Last,
submit your app using Xcode or Application Loader. When your app is approved, use iTunes Connect to release
it by setting the date when the app will be available to customers. If you are distributing your Mac app outside
the store, you follow a slightly different process.

About App Distribution
At a Glance

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

12

Related Chapters: “Submitting Your App” (page 133), “Releasing and Updating Your App” (page
150), “Managing Your App in iTunes Connect” (page 151), “Distributing Applications Outside the Mac
App Store” (page 194)

How to Use This Document
Begin by reading the first three chapters in sequence to learn the essential steps and concepts for developing
for the store. If you add a store-specific technology to your app, read “Provisioning Your App for Store
Technologies” (page 54) followed by “Configuring Store Technologies in Xcode and iTunes Connect” (page
79) to learn how to configure that technology. Before you distribute your app, read “Configuring Your Xcode
Project for Distribution” (page 98) to perform final configuration steps. All iOS developers need to read the
“Beta Testing Your iOS App” (page 117) chapter (you should never submit an app to the store without first
testing it on many different devices). After thorough testing, read “Submitting Your App” (page 133) for how
to do so. After Apple approves your app, read “Releasing and Updating Your App” (page 150) for how to set
the availability date. If you decide to distribute outside of the Mac App Store, read “Distributing Applications
Outside the Mac App Store” (page 194). After you’ve had your Apple Developer Program account for a while,
learn how to maintain your assets by reading “Best Practices for Maintaining Certificates and Provisioning
Profiles” (page 158). And if you enroll as a company, read “Managing Your Team” (page 184) for a description
of the team roles and additional administrative tasks you perform throughout your project. Refer to the glossary
for the definitions of terms used in the document.

See Also
You should already be familiar with the software and tools you use to write code before reading this document.
If not, there are a number of platform-specific tutorials you should read first. Then read the technology overview
documents followed by the appropriate human interface guidelines for your platform, and most important,
the guidelines for submitting your app to the store.

MaciOS

StartDevelopingMacAppsTodayStart Developing iOS Apps Today

App Store Submission Tutorial

To get started . . .

Mac Technology Overview

Mac App Programming Guide

iOS Technology Overview

iOS App Programming Guide

To learn more about
technologies . . .

About App Distribution
How to Use This Document

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

13

MaciOS

OS X Human Interface Guidelines

App Store Review Guidelines for
Mac Apps

iOS Human Interface Guidelines

App Store Review Guidelines for iOS
Apps

To learn about the user
interface guidelines . . .

Xcode User Guide

iTunes Connect Developer Guide

Xcode User Guide

iTunes Connect Developer Guide

iOS Simulator User Guide

To learn more about
tools . . .

About App Distribution
See Also

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

14

Apple Developer Programs offer a complete set of technical resources, support, and access to prerelease
software—providing everything you need to create innovative applications for iOS and Mac, extensions for
Safari, and accessories for iPod, iPhone, and iPad. After you enroll in the iOS Developer Program or Mac Developer
Program, you’ll have full access to Member Center and iTunes Connect.

Enrolling in an Apple Developer Program
During enrollment, you’ll be asked for basic personal information, including your legal name and address. If
you’re enrolling as a company or organization, you'll need to provide a few more things, like your legal entity
name and D-U-N-S Number, as part of the verification process. Once your information is verified, you’ll review
license agreements, purchase your program on the Apple Online Store, and receive details on how to activate
your membership.

You can always add more Apple Developer Program memberships to your account. For example, you can first
join the iOS Developer Program and later add the Mac Developer Program and the Safari Developer Program.

To enroll in an Apple Developer Program, go to Apple Developer Program Enrollment.

You Enroll as an Individual or a Company
During the enrollment process, you choose whether to enroll as an individual or a company. If you enroll as
an individual, you are considered a one-person team, one who can perform all the tasks described in this
document except manage multiple team members.

If you enroll as a company, you may add other persons to your team and grant them privileges to manage
your account. All team members must be Registered Apple Developers. Team members have different privileges,
so depending on your role, you may not be able to perform all the tasks in this book. To learn about the different
roles and privileges, read “About Apple Developer Program Team Roles and Privileges” (page 184).

You Can Join Multiple Teams
You can use your Apple ID to join multiple teams but with some restrictions.

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

15

Enrolling in an Apple Developer Program and
Accessing Its Tools

https://developer.apple.com/programs/start/standard/

Registered Apple Developers are given an Apple ID that identifies a person, not a membership in an Apple
Developer Program. The Apple ID must have a unique email address associated with it that is verified by Apple.
You’ll use your Apple ID to sign in to Member Center and iTunes Connect.

A single Apple ID can be associated with multiple Member Center teams, but can only be associated with a
single iTunes Connect team. Consequently, developers need to create another Apple ID for different individual
or company accounts that they want to manage in iTunes Connect.

Emails from Apple Contain Further Instructions and Welcome You
When you enroll in an Apple Developer Program or are invited to join a team, you receive a series of emails.
For example, if you need to register as an Apple developer, Apple sends you an email requesting that you
confirm your email address. Be sure to read and follow the instructions in these emails promptly to streamline
the enrollment process.

Accessing Member Center and iTunes Connect
Although most administrative tasks can be done in Xcode, you may need to use web tools to manage your
assets and enter metadata about your app.

Accessing Member Center
Member Center is a starting point to access other web tools. It’s also where you manage your membership
account, invite team members, and request technical support. If you have enrolled as a company, you can
invite others to join your team and help you perform some of these tasks.

To sign in to Member Center

1. Go to the Apple Developer website.

2. Select Member Center in the toolbar.

Enrolling in an Apple Developer Program and Accessing Its Tools
Accessing Member Center and iTunes Connect

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

16

http://developer.apple.com

3. Enter your Apple ID and password, and click Sign In.

4. If you belong to multiple teams, select a team from the Teams menu and click Continue.

Select a team that is enrolled in the developer program you want to use. For example, if you are
developing an iOS app, select a team that belongs to the iOS Developer Program.

Managing Your Certificates, Identifiers, and Profiles
Access Certificates, Identifiers & Profiles by signing in to Member Center. Here you can register App IDs and
devices, enable app services, and create signing certificates and provisioning profiles for iOS and Mac apps. In
the Certificates, Identifiers & Profiles area of Member Center, you can add additional developer programs.

To access your certificates, identifiers, and profiles

1. Sign in to Member Center.

Enrolling in an Apple Developer Program and Accessing Its Tools
Accessing Member Center and iTunes Connect

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

17

http://developer.apple.com/membercenter

2. Click the icon or text for Certificates, Identifiers & Profiles under Developer Program Resources.

3. Click the assets below iOS Apps or Mac Apps to view them.

Enrolling in an Apple Developer Program and Accessing Its Tools
Accessing Member Center and iTunes Connect

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

18

For example, click Identifiers under Mac Apps to view your Mac Developer Program identifiers, and
click Certificates under iOS Apps to view your iOS Developer Program certificates.

Enrolling in an Apple Developer Program and Accessing Its Tools
Accessing Member Center and iTunes Connect

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

19

The type of asset you selected will be listed. If you don’t have that type of asset associated with your
membership, you will see information similar this to help you get started:

4. If you belong to multiple developer programs and want to switch to another program, select it from
the iOS Apps or Mac Apps drop-down menu on the left.

5. Select a menu item from the account button in the upper-right corner to sign out or sign in using
another Apple ID.

To join another developer program

1. Sign in to Member Center.

Enrolling in an Apple Developer Program and Accessing Its Tools
Accessing Member Center and iTunes Connect

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

20

http://developer.apple.com/membercenter

2. Click the icon or text for Certificates, Identifiers & Profiles under Developer Program Resources.

3. Click the “Join now” button under the program name you want to join.

Enrolling in an Apple Developer Program and Accessing Its Tools
Accessing Member Center and iTunes Connect

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

21

You are taken to the Apple Online Store to complete your purchase and activate your membership.

Accessing iTunes Connect
iTunes Connect is the repository for all store-related assets, including your app binaries. You use iTunes Connect
to market and distribute your app, check the status of your contracts, set up tax and banking information, get
sales and finance reports, and manage your app’s metadata. You can give another set of users access to your
iTunes Connect account. You access iTunes Connect from Member Center or by going directly to the iTunes
Connect website.

To go to iTunes Connect from Member Center

1. Sign in to Member Center.

2. Click the icon or text for iTunes Connect in the App Store Distribution section under Developer Program
Resources.

3. Enter your Apple ID and password, and click Sign In.

Enrolling in an Apple Developer Program and Accessing Its Tools
Accessing Member Center and iTunes Connect

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

22

https://itunesconnect.apple.com
https://itunesconnect.apple.com
http://developer.apple.com/membercenter

Bookmarking the Web Tools
You can also bookmark these links to go directly to these resources:

 ● Member Center

 ● Certificates, Identifiers & Profiles

 ● iTunes Connect

Recap
You learned how to enroll in an Apple Developer Program and how to access Member Center and iTunes
Connect. You’ll use these resources throughout the development process to manage your account assets.

Enrolling in an Apple Developer Program and Accessing Its Tools
Recap

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

23

https://developer.apple.com/membercenter
http://developer.apple.com/account
https://itunesconnect.apple.com

Code signing uses cryptographic technology to digitally sign your app and installer package. Code signing
your app lets users trust that your app has been created by a source known to Apple and that your code hasn’t
been modified since you signed it. You must sign your code to submit your iOS and Mac apps to the store. For
certain store technologies, you must sign your code during development and testing—well before submitting
your app to the store. iOS and OS X verify the signature of your app before allowing it to run on devices or use
certain technologies.

You use specialized signing certificates in your keychain to sign an app or installer package. For iOS apps, you
need these signing certificates during development and to run your app on devices. For Mac apps, you don’t
need signing certificates unless you enable App Sandbox (which is required by the Mac App Store) and use
store technologies such as iCloud and Game Center. Both iOS and Mac apps need special signing certificates
to submit your app to the store. For Mac apps, you need a type of signing certificate to distribute your app
outside of the store.

Therefore, the first step to prepare for code signing is to create the certificates specific to your platform:

 ● For iOS apps, you will create one certificate for each of these tasks:

 ● to run an app on an iOS device and use store technologies during development

 ● to distribute your app on designated devices for testing or to submit it to the store

 ● For Mac apps, you will create one certificate for each these tasks:

 ● to use store technologies during development and testing

 ● to sign your app before submitting it to the store

 ● to submit an installer, containing your signed app, to the store

 ● to distribute your app outside of the store

 ● to distribute an installer, containing your app, outside of the store

About Code Signing
Code signing your app allows the operating system to identify who signed your app and to verify that your
app has not been modified since you signed it. Your app’s executable code is protected by its signature because
the signature becomes invalid if any of the executable code in the app bundle changes. Note that resources
such as images and nib files are not signed; therefore, a change to these files does not invalidate the signature.

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

24

Creating Your Signing Certificates

Code signing is used in combination with your App ID, provisioning profile, and entitlements (which you will
learn more about later) to ensure that:

 ● Your app is built and signed by you or a trusted team member.

 ● Apps signed by you or your team run only on designated development devices.

 ● Apps run only on the test devices you specify.

 ● Your app is not using technologies you didn’t add to your app.

 ● Only you can submit revisions of your app to the store.

 ● If you choose to distribute outside of the store (Mac only), the app can’t be modified and distributed by
someone else.

Code signing also allows your app’s signature to be removed and re-signed by a trusted source. For example,
you sign your app before submitting it to the store, but Apple re-signs it before distributing it to customers.
Also, you can re-sign and submit a fully tested development build of your app to the store.

Xcode uses your code signing identity to sign your app during the build process. This code signing identity
consists of a public-private key pair that is issued by Apple. The private key is stored in your keychain and used
by cryptographic functions to generate the signature. The certificate contains the public key and identifies you
as the owner of the key pair. The certificate is stored both in your keychain on your Mac and in your developer
account. An intermediate certificate is also required to be in your keychain to ensure that your certificate is
issued by a certificate authority.

To sign apps, you must have both the code signing identity and the intermediate certificate installed in your
keychain. When you install Xcode, Apple’s intermediate certificates are installed in your keychain for you. You
create your code signing identity and sign your app using Xcode. Thereafter, you use Keychain Access and
Member Center to manage your code signing identities.

Creating Your Signing Certificates
About Code Signing

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

25

Signing certificates are used to sign your app or installer package. A type of signing certificate used for
development is used to identify you in a development provisioning profile that allows apps signed by you to
launch on devices.

Requesting Signing Certificates
Before you can code sign your app, you need to create your development certificate. You actually create all
the types of signing certificates you’ll need, throughout the project life cycle, using Xcode. Xcode requests,
downloads, and installs your signing certificates for you.

For a company, a team member requests their development certificate using Xcode but downloads and installs
it later, after it is approved, as described in “Approving Development Certificates” (page 190).

To request signing certificates

1. In Xcode, choose Window > Organizer to open the Organizer window.

2. Click Devices to display the Devices organizer.

Creating Your Signing Certificates
Requesting Signing Certificates

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

26

3. Select "Refresh from Developer Portal” from the Editor menu.

4. Enter your Apple ID user name and password, and click “Log in”.

If you don’t have a development certificate, Xcode offers to request development certificates on your
behalf for the developer programs you are enrolled in. For example, if you are enrolled in the iOS
Developer Program, Xcode offers to request an iOS Development certificate.

5. Click Submit Request for each dialog that appears.

Xcode offers to request development and distribution certificates depending on the type of account
you have (whether its an individual or company account) and the developer programs you belong to
(iOS or Mac). If you are an individual developer, wait while Xcode submits the requests for each certificate

Creating Your Signing Certificates
Requesting Signing Certificates

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

27

and they are approved. Refer to Table 2-1 (page 36) for the types of certificates Xcode may request
on your behalf. iOS developers need an iOS Development certificate and Mac developers need a Mac
Development certificate to proceed.

6. At the end of the refresh process, a dialog asks whether you want to export your developer profile.
Click Export.

Creating Your Signing Certificates
Requesting Signing Certificates

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

28

The private keys for your certificates are stored in your keychain, and the certificates, along with their
public keys, are stored by Member Center. Therefore, you can’t move to another Mac or user account
and refresh your provisioning profiles in Xcode to restore your certificates. Instead, you should back
up your certificates now, after you create them, and then import them later from another Mac or later
if you are missing private keys in your keychain on this Mac.

7. Enter a filename and password, and Click Save.

Creating Your Signing Certificates
Requesting Signing Certificates

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

29

For your protection, the exported file is encrypted and password protected.

If you need to export or import your developer profile later, follow the steps in “Exporting and Importing
Certificates and Provisioning Profiles” (page 159).

Verify Your Steps
Verify that your certificates are correct and ready for use. If the certificates shown in Xcode and Keychain Access
don’t match your certificates in Member Center, follow the instructions in “Certificate Issues” (page 208), because
if the certificates in your keychain are not valid, you won’t be able to sign your app.

The first time you verify your certificates, verify them in Xcode, Keychain Access, and Member Center to learn
where they are located and how they appear in each tool. Later, you’ll use Keychain Access for troubleshooting.

Creating Your Signing Certificates
Requesting Signing Certificates

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

30

Note: The name of the certificate in Keychain is not the same as the certificate type that appears
in Xcode and Member Center. Refer to Table 2-1 (page 36) for the mapping between the certificate
names and types that appear in the tools.

Verify Using Xcode
After creating your certificates, you immediately see them displayed in Xcode.

To verify signing certificates using Xcode

1. In the Devices organizer, select your team in the Teams section.

Xcode adds a Teams section to the Devices organizer that displays all your team certificates that are
managed by Member Center and appear in your keychain. The list should include all the certificates
you recently and previously requested.

Note: Individual developers are considered a one-person team.

For iOS apps, two certificates appear in the Teams section:

Creating Your Signing Certificates
Requesting Signing Certificates

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

31

For Mac apps, five certificates appear in the Teams section:

2. Verify that the certificates are valid.

If the certificate is valid in your keychain, a green circle containing a checkmark badge appears next
to the name of your certificate in Xcode. This checkmark means that the certificate authority (for
example, Apple) that issued the intermediate certificate authorized your certificate.

Verify Using Keychain Access
Keychain Access shows the private and public keys for each of your certificates.

To verify signing certificates using Keychain Access

1. Launch Keychain Access located in ~/Applications/Utilities.

When you request a development or distribution certificate using Xcode, the certificate is automatically
installed in your login keychain.

2. Select “login” in the Keychains section, and Certificates in the Category section.

Creating Your Signing Certificates
Requesting Signing Certificates

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

32

The development certificate should appear in the Certificates category in Keychain Access. The name
of the development certificate begins with the text “iPhone Developer” for the iOS Developer Program
and “Mac Developer” for the Mac Developer Program, followed by your name (development certificates
belong to a person).

Other types of certificates also appear in the Certificates category of Keychain Access.

Tip: Keep your personal keychain items in your login keychain. If your certificates don’t appear

in the login keychain, it may not be the default keychain. The default keychain appears in bold

in the Keychains column in Keychain Access. If the default keychain is not login, select login in

the Keychains column and choose File > Make Keychain “login” Default.

3. Verify that there is a disclosure triangle to the left of the certificate.

If you click the disclosure triangle next to the certificate name, your private key appears. If the disclosure
triangle doesn’t appear, you are missing your private key.

Creating Your Signing Certificates
Requesting Signing Certificates

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

33

4. Verify that the certificates are valid.

When you select a certificate, a similar green circle containing a checkmark appears in Keychain Access
above the list of certificates. The text next to the checkmark should read “This certificate is valid.”

Verify Using Member Center
Member Center should show the same certificates you see in Xcode and Keychain Access because it stores the
public keys.

To verify signing certificates using Member Center

1. In Certificates, Identifiers & Profiles, select Certificates.

2. In the Certificates section, select Development.

The names, types, and expiration dates of the development certificate should match the information
that you view in Xcode.

3. In the Certificates section, select Distribution.

Creating Your Signing Certificates
Requesting Signing Certificates

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

34

http://developer.apple.com/membercenter
http://developer.apple.com/account

The names, types, and expiration dates of the development certificate should match the information
that you view in Xcode.

Troubleshooting
If the certificates shown in Xcode and Keychain Access don’t match your certificates in Member Center, read
“Certificate Issues” (page 208) for information about how to resolve the discrepancies.

Your Signing Certificates in Depth
Your code signing identities, stored in your keychain, represent your iOS and Mac program development and
distribution credentials. You should be familiar with the names of these certificates, because they appear in
menus, and the types of certificates, because they appear in lists, so that you don’t accidentally remove them
from your keychain or Member Center.

There are different types of signing certificates for different purposes. Development certificates identify a
person on your team and are used to run an app on a device. During development and testing, you are required
to sign all iOS apps that run on devices and Mac apps that use certain technologies like iCloud and Game
Center.

Creating Your Signing Certificates
Your Signing Certificates in Depth

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

35

Distribution certificates identify the team and are used to submit your app to the store or for a Mac app,
distribute it outside of the store. If you are a company, distribution certificates can be shared by team members
who have permission to submit your app. There are multiple kinds of distribution certificates, each associated
with a specific method of distribution. Different code signing identities are also used for iOS and Mac apps.

Signing certificates are issued and authorized by Apple. You must have the intermediate certificate provided
by Apple installed in your system keychain to use your certificate; otherwise, it is invalid. The intermediate
certificates provided by Apple and installed by Xcode are:

 ● Apple Worldwide Developer Relations Certification Authority. Used to validate development and store
certificates.

 ● Developer ID Certification Authority. Used to validate a Developer ID certificate for distribution outside
of the Mac App Store.

Refer to Table 2-1 for the mapping between the type of the certificate and name of the certificate as it appears
in Keychain Access, and for the purpose of each.

The Devices organizer in Xcode and Member Center display the team name (or person’s name) and type for
each certificate. Keychain Access and the Code Signing Identity build setting pop-up menu in Xcode display
the name of the certificate.

There’s one Mac or iOS development certificate per team member. Therefore, development certificate names
contain the person’s name. All other types of certificates are owned by the team (shared by multiple team
members) and therefore, contain the team name. Individual developers are a one-person team, and so your
name and the team name are the same.

Table 2-1 Certificate types and names

DescriptionCertificate nameCertificate type

Used to sign an iOS app during
development.

iPhone Developer: Team
Member Name

iOS Development

Used to sign an iOS app for ad hoc
testing and submission to the App Store.

iPhone Distribution: Team
Name

iOS Distribution

Used to sign a Mac app during
development.

Mac Developer: Team Member
Name

Mac Development

Used to sign a Mac app for submission
to the Mac App Store.

3rd Party Mac Developer
Application: Team Name

Mac App Distribution

Creating Your Signing Certificates
Your Signing Certificates in Depth

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

36

DescriptionCertificate nameCertificate type

Used to sign a Mac Installer Package for
submission to the Mac App Store.

3rd Party Mac Developer
Installer: Team Name

Mac Installer
Distribution

Used to sign a Mac app for distribution
outside the Mac App Store.

Developer ID Application: Team
Name

Developer ID
Application

Used to sign a Mac Installer Package for
distribution outside the Mac App Store.

Developer ID Installer: Team
Name

Developer ID Installer

Recap
In this chapter, you learned how to create your development and distribution signing certificates that you’ll
use in later chapters. You also learned how to identify the different types of certificates in Xcode, Keychain
Access, and Member Center.

Creating Your Signing Certificates
Recap

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

37

All iOS apps and most Mac apps require that you use provisioning profiles during development. For iOS apps,
you cannot run an app on a device (an iPhone, iPad, or iPod touch) until you provision that device for
development. Similarly, you cannot run an app on a Mac that uses certain store technologies until you provision
the Mac.

Provisioning is the process of preparing and configuring an app to launch on devices and use certain services.
During development and testing, you designate the devices that can launch your app. When you submit your
app to the store, you just provision your app. Provisioning iOS and Mac apps involves creating certificates,
configuring App IDs, creating development and distribution provisioning profiles, and setting entitlements.

This chapter shows you how to use the team provisioning profile, which Xcode manages for you, to simplify
the provisioning process during development. Xcode automatically adds your development certificate and all
registered devices to the team provisioning profile. For example, you can use the team provisioning profile to
run your iCloud app on all of your development devices. You can also use the team provisioning profile to run
sample and test apps on devices.

For iOS apps, you can use the team provisioning profile to enable iCloud, data protection, and Passbook. For
Mac apps, you can use the team provisioning profile to enable iCloud. To configure other store technologies
that require a custom provisioning profile, read “Provisioning Your App for Store Technologies” (page 54).

About the Team Provisioning Profile
The team provisioning profile is a development provisioning profile that Xcode manages for you. A
development provisioning profile allows your app to launch on devices and use certain store technologies
during development. For an individual, the team provisioning profile allows all apps signed by you to run on
all of your registered devices. For a company, the team provisioning allows any app developed by a team, to
be signed by any team member, and installed on any team device. Because the team provisioning profile isn’t
associated with a specific app, this profile is very useful when you want to install simple test apps on a device.
When learning to provision devices, it is easier to start by using the team provisioning profile.

The team provisioning profile contains:

 ● A wildcard App ID that matches all your team’s apps

 ● All devices associated with the team

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

38

Developing Apps Using the Team Provisioning
Profile

 ● All development certificates associated with the team

The first time you register a device, Xcode creates the team provisioning profile named iOS Team Provisioning
Profile or Mac Team Provisioning Profile using a wildcard App ID it also creates. Thereafter, Xcode updates the
team provisioning profile whenever you register a device, create a development certificate, or refresh
provisioning profiles using Xcode. (Changes you make to your team assets using Member Center don’t
automatically update the team provisioning profile.) Xcode adds all of the devices and development certificates
from all team members to this profile. The team provisioning profile can be used for iCloud but not for other
store technologies that require an explicit App ID.

This diagram shows an iOS Team Provisioning Profile for a company with three team members.

This diagram shows a similar Mac Team Provisioning Profile for a Mac company.

Developing Apps Using the Team Provisioning Profile
About the Team Provisioning Profile

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

39

Adding Devices to Your Team Provisioning Profile
After creating the signing certificates, the next step is to register your development devices. The first time you
register a device, Xcode creates the team provisioning profile containing a wildcard App ID it also creates, and
all the iOS Development or Mac Development certificates in your account.

You can register development devices using either Xcode or Member Center. However, if you register your
device using Xcode, Xcode updates the team provisioning profile and provisions your device at the same time.
The device is provisioned when a provisioning profile that contains the device information is installed on the
device.

Registering and Provisioning an iOS Device Using Xcode
For iOS apps, you register and provision a device in a single operation.

To provision your iOS device for development using Xcode

1. In Xcode, choose Window > Organizer, and click Devices to display the Devices organizer.

2. Connect your device to your Mac.

3. In the Devices section, select your iOS device.

4. Click the “Use for Development” or “Add to Portal” button.

Developing Apps Using the Team Provisioning Profile
Adding Devices to Your Team Provisioning Profile

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

40

If the device was previously used for development, the “Use for Development” button does not appear.
If this happens, click “Add to Portal” at the bottom of the window instead.

5. Enter your user name and password, and click “Log in.”

Xcode also installs the team provisioning profile on your device, so you can immediately use it for
development.

Registering and Provisioning a Mac Using Xcode
If your Mac app uses specialized technologies such as iCloud and Game Center, you need to provision it for
development, too. After you register your Mac and add it to a provisioning profile, you install the provisioning
profile on the Mac.

To provision your Mac for development using Xcode

1. In Xcode, choose Window > Organizer, and click Devices to display the Devices organizer.

2. In the Devices section, select your Mac.

Developing Apps Using the Team Provisioning Profile
Adding Devices to Your Team Provisioning Profile

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

41

3. Click the “Add to Portal” button at the bottom of the window.

4. Enter your user name and password, and click “Log in.”

5. Click Provisioning Profiles under Library.

6. Drag the Mac Team Provisioning Profile to your Mac under Devices.

Developing Apps Using the Team Provisioning Profile
Adding Devices to Your Team Provisioning Profile

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

42

In the Devices organizer, the team provisioning profile appears in the Provisioning Profiles section on
your Mac.

Verify Your Steps
The first time that you use the team provisioning profile, you should verify that the device ID has been added
correctly and that the team provisioning profile is installed on your device.

Verify That Your Device Was Registered and Added to the Team Provisioning Profile
Use Member Center to view your registered devices and details about the team provisioning profile.

To verify that your device is registered

1. In Certificates, Identifiers & Profiles, select Devices.

2. Under Devices, select All.

Developing Apps Using the Team Provisioning Profile
Adding Devices to Your Team Provisioning Profile

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

43

http://developer.apple.com/membercenter
http://developer.apple.com/account

The device you registered should appear enabled in the list. Enabled devices appear in black text and
disabled devices appear in gray text.

To verify that your device is added to the team provisioning profile

1. In Certificates, Identifiers & Profiles, select Provisioning Profiles.

2. Under the Provisioning Profiles section, select All.

Developing Apps Using the Team Provisioning Profile
Adding Devices to Your Team Provisioning Profile

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

44

http://developer.apple.com/account

The team provisioning profile, starting with the text “iOS Team Provisioning Profile” or “Mac Team
Provisioning Profile,” should appear under iOS Provisioning Profiles or Mac Provisioning Profiles.

3. Click the team provisioning profile to view its details.

The team provisioning profile contains an App ID—either for iOS apps (Xcode iOS Wildcard App ID) or
for Mac apps (Xcode Mac Wildcard App ID). The screenshot below shows an iOS Provisioning Profile.

Developing Apps Using the Team Provisioning Profile
Adding Devices to Your Team Provisioning Profile

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

45

Listed beneath the App ID is the number of development certificates and devices contained in the
provisioning profile. The values should equal the total number of iOS Development or Mac Development
certificates and registered devices contained in your account. If you are an individual, you should have
only one development certificate.

Verify That Your Team Provisioning Profile Is Installed on Your Device
Use Xcode to examine the provisioning profiles on your device.

To verify that a provisioning profile is installed on your device

1. In Xcode, choose Window > Organizer, and click Devices to display the Devices organizer.

2. Click the disclosure triangle next to your device under Devices.

3. Select Provisioning Profiles under your device.

Developing Apps Using the Team Provisioning Profile
Adding Devices to Your Team Provisioning Profile

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

46

Your provisioning profile should be listed in the detail area and the status should be “Valid profile.”

For Mac apps, optionally use System Preferences to view all of the installed provisioning profiles.

To verify that your provisioning profile is installed on your Mac using System Preferences

1. Launch System Preferences.

2. Select Profiles under System.

If you have one or more profiles installed, a Profiles preference appears; otherwise, it does not.

3. Select a provisioning profile under Provisioning Profiles.

Developing Apps Using the Team Provisioning Profile
Adding Devices to Your Team Provisioning Profile

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

47

Verify that your provisioning profile is valid. The provisioning profile is valid if it has not expired and
the text “Verified” appears under the name of the provisioning profile.

Troubleshooting
There are several reasons why Xcode may not create the team provisioning profile. Follow the steps for each
situation below and then re-create the team provisioning profile.

 ● If you have a team provisioning profile but for some reason it is invalid, delete and re-create it. Follow the
steps in “Removing Provisioning Profiles from Your Team” (page 179) to delete the team provisioning
profile.

 ● If your device was previously registered but is disabled, enable the device using Member Center and then
refresh your developer profile using Xcode to create the team provisioning profile.

 ● If your device was previously registered and is enabled, refresh your developer profile using Xcode to
create the team provisioning profile.

To create the team provisioning profile using assets already in your account, open the Devices organizer in
Xcode and select "Refresh from Developer Portal” from the Editor menu.

Developing Apps Using the Team Provisioning Profile
Adding Devices to Your Team Provisioning Profile

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

48

Code Signing Your App Using the Team Provisioning Profile
To run an app on an iOS device and enable store technologies, the app needs to be code signed and provisioned.
For example, using the team provisioning profile, you can enable iCloud. When you select your development
certificate—contained in the team provisioning profile—as the code signing identity, the app is code signed
and the team provisioning profile is embedded in your app’s bundle. The embedded team provisioning profile
allows your app to launch and use iCloud.

When you build the app, you code sign it with the signing certificate contained in the provisioning profile you
want to use. The possible values for the Code Signing Identity build setting pop-up menu are:

 ● Don’t Code Sign. Don’t sign your app. Selecting this option disables entitlements including sandboxing.

 ● Automatic Profile Selector. Selects an identity that matches your developer or distribution certificate
name.

 ● Identities without Provisioning Profiles. Selects a code signing identity that is not in a provisioning
profile.

 ● Other. Selects a specific code signing identity. The code signing identities in your default keychain are
listed by the name. Expired or otherwise invalid identities are dimmed and cannot be chosen.

A menu item appears in the Code Signing Identity build setting pop-up menu for each provisioning profile to
which your development certificate belongs. The default setting is the platform-specific development certificate
that appears in the Automatic Profile Selector menu item, which matches your development certificate in the
team provisioning profile. Refer to Table 2-1 (page 36) for a description of each type of certificate that may
appear in this menu.

Before you begin, decide whether to set the Code Signing Identity build setting at the project or target level.
For a single target, you can set this build setting at either the project or target level as long as you are consistent.
For multiple targets that use the same code signing identity, you should set this build setting at the project
level. For multiple targets that use different code signing identities, you must set this build setting for each
individual target. For example, choosing the project level ensures that any helper apps inside of your project
are code signed as well as the main app.

Set the Code Signing Identity to your development certificate contained in the team provisioning profile.

To set the code signing identity to your development certificate

1. In the Xcode project editor, select the target.

Important: If you want to sign multiple targets with the same code signing identity, select the
project, not a target.

Developing Apps Using the Team Provisioning Profile
Code Signing Your App Using the Team Provisioning Profile

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

49

2. Select the Build Settings tab.

3. Click All.

4. Type Code Signing in the search field in the Build Settings pane of the project editor.

5. From the Code Signing Identity pop-up menu—in your team provisioning profile section—choose
your development certificate.

For iOS apps, select the certificate in the iOS Team Provisioning Profile menu item that begins with the
text “iPhone Developer:” followed by your name.

Developing Apps Using the Team Provisioning Profile
Code Signing Your App Using the Team Provisioning Profile

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

50

For Mac apps, select the certificate in the Mac Team Provisioning Profile menu item that beings with
the text “Mac Developer:” followed by your name.

You must build your app to actually code sign it. You can build and run your Mac app by simply clicking the
Run button. For an iOS app, follow the steps in “Launching Your iOS App on the Device” (page 52), to sign
your app and launch it on a device.

The first time you sign your app, a dialog appears asking if you want to allow the codesign command-line
utility to sign your app using the private key in your login keychain. When you see this dialog, click Always
Allow. If you click Allow, the dialog appears every time you build and run your app. If a dialog appears when
you run the app asking for a Developer Tools Access login, enter an account name and password of a user in
this group—for example, a system administrator—and click Continue.

To learn more about Apple’s code signing technology, read Code Signing Guide .

Troubleshooting
If the team provisioning profile doesn’t appear in the Code Signing Identity menu, choose a certificate under
Automatic Profile Selector. Then try to choose your development certificate under the team provisioning profile
again.

If a code signing error occurs when you build the app, verify that the Code Signing Identity build setting is
correct. Also, check whether the Code Signing Identity build setting is set at the project or target level (target
settings override project settings). To troubleshoot the Code Signing Identity build setting, read “Build and
Code Signing Issues” (page 210).

Developing Apps Using the Team Provisioning Profile
Code Signing Your App Using the Team Provisioning Profile

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

51

Launching Your iOS App on the Device
After provisioning your device for development, you can tell Xcode to launch the app on the device. You do
this by changing the run destination setting in the Scheme pop-up menu before you build the app. When you
connect an iOS device with a valid provisioning profile to your Mac, the name of the device appears as an
option in the destination Scheme pop-up menu.

You should also test your app in iOS Simulator using Instruments and other tools before distributing your app.
Read iOS Simulator User Guide for details on how to use iOS Simulator to test your app.

To launch an iOS app on a device

1. Connect the device to your Mac.

2. Choose Product > Scheme > Edit Scheme to open the scheme editor.

3. Select your device from the Destination pop-up menu.

When you connect an iOS device with a valid provisioning profile into your Mac, its name appears as
an option in the destination Scheme pop-up menu.

4. Click OK to close the scheme editor.

5. Click Run.

Developing Apps Using the Team Provisioning Profile
Launching Your iOS App on the Device

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

52

If a prompt appears asking whether codesign can sign the app using a key in your keychain, click
Always Allow.

Troubleshooting
There are several reasons why your app may not run on a device. Often the configuration of your project
doesn’t match the configuration of your device. Assuming that you followed and verified the steps in this
chapter, check the Xcode project settings. To verify that the iOS Deployment Target is less than or equal to
the iOS software version installed on your device, read “Setting the Deployment Target” (page 105).

Recap
In this chapter, you learned how to use the team provisioning profile, which Xcode creates and manages for
you, to provision your devices for development and code sign your app. You also learned how to launch your
app on an iOS device.

Developing Apps Using the Team Provisioning Profile
Recap

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

53

Certain technologies—such as iCloud, Game Center, and In-App Purchase—are available only to apps distributed
through the store. But simply submitting your app to the store doesn’t enable these technologies. You need
to provision your app to use these technologies. The first step is to configure App IDs and provisioning profiles
to enable the technologies you want to use. Later, you’ll complete the configuration of some technologies
using Xcode and iTunes Connect.

The store technologies available for both iOS and Mac apps are:

 ● Apple Push Notification service (APNs). Allows an app that is not running in the foreground to notify
the user that it has information for the user. (This document and some tools refer to this technology as
push notifications .)

 ● Game Center. Apple’s social gaming network that allows players to connect to the service and exchange
information with other players.

 ● iCloud. Allows you to share the user’s data among multiple instances of your app running on different
iOS and Mac OS X devices.

 ● In-App Purchase. Embeds items to purchase directly into your app by allowing you to connect to the
store and securely process payments from the user.

The additional store technologies available for iOS apps are:

 ● Data protection. Adds a level of security to files stored on-disk by your app.

 ● Newsstand. Allows you to deliver magazine and newspaper subscription content to users.

 ● Passbook. Presents digital representations of information—such as a coupon, ticket for a show, or boarding
pass—that allow users to redeem a real-world product or service.

 ● Routing apps. Allows apps that can display point-to-point directions to make those directions available
to Maps and other apps.

Follow these steps to provision your app to use these technologies:

1. If necessary, create an App ID.

2. Enable store technologies for your App ID.

3. Use the team provisioning profile or create your own development provisioning profile containing your
App ID.

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

54

Provisioning Your App for Store Technologies

4. Set your bundle ID to match your App ID.

5. Provision your development devices.

6. Build and sign your app using your development provisioning profile.

After performing these steps, follow any additional technology-specific steps described in “Configuring Store
Technologies in Xcode and iTunes Connect” (page 79).

The goal of this chapter is to create a development provisioning profile that is customized for your app.

About Development Provisioning Profiles
You use a development provisioning profile to authorize your app to launch on devices and use certain store
technologies during development. It is one of the two types of provisioning profiles you create in the lifetime
of your app. Later, you’ll use the other type of provisioning profile, a distribution provisioning profile, for
testing and submitting your app to the store.

In general, your app needs to be authorized by Apple to run on an iOS device. Your app also needs to be
authorized by Apple to use certain iOS and OS X technologies. You enable and configure technologies for your
app by setting entitlements. Some entitlements are enabled for an App ID (which identifies a set of apps
created by your team) and others are set in the Xcode project. You also enter your App ID into iTunes Connect
for additional security checks. A provisioning profile contains the App ID and other assets required for that
type of profile.

A development provisioning profile authorizes a specific set of apps to run, devices to run those apps, and
development certificates to sign those apps. Consequently, a development provisioning profile is comprised
of these assets: a single App ID, a set of devices, and a set of development certificates. Your development
provisioning profiles reside in Member Center, but since Xcode downloads them, you can install them onto
devices.

Provisioning Your App for Store Technologies
About Development Provisioning Profiles

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

55

Each Mac and iOS device in a provisioning profile is identified by its unique device ID (UDID). The devices you
register and add to a development provisioning profile are stored by Member Center. Each individual or
company can register up to 100 devices for development and testing.

If you use certain technologies that require an explicit App ID (that is, an App ID that matches a single bundle
ID), you will create a custom development provisioning profile that contains the explicit App ID. (Later, you’ll
create a distribution provisioning profile containing the App ID.)

Before You Begin
Before you begin, decide on what type of App ID and provisioning profile you need for the technologies you
want to use. It’s convenient to use the team provisioning profile that Xcode manages for you, as described in
“Developing Apps Using the Team Provisioning Profile” (page 38), but you can’t use the team provisioning
profile for all technologies.

Table 4-1 shows what needs to be configured for each of the store technologies. You configure one App ID to
enable all the technologies you want to use for one or more apps. If you don’t need an explicit App ID, you
can configure the Xcode wildcard App ID and use the team provisioning profile. Otherwise, you need to create
an explicit App ID and corresponding development and distribution provisioning profiles containing the App
ID that you manage yourself.

Table 4-1 Tasks you perform to configure store technologies

Configure
iTunes Connect

Edit
Info.plist

Set
Entitlements

Enable
App ID

Create
Explicit App ID

APNs

Game Center

iCloud

In-App Purchase

Data protection

Newsstand

Passbook

Routing apps

Provisioning Your App for Store Technologies
Before You Begin

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

56

For example, if your iOS app uses iCloud, data protection, Newsstand, Passbook, or routing apps, you can use
the team provisioning profile. For Mac apps, if your app uses iCloud only, you can use the team provisioning
profile. However, if you add push notifications, In-App Purchase, or Game Center to your app, you need to
create an explicit App ID and custom provisioning profiles for both development and distribution. If you develop
multiple apps that use different sets of technologies, you need specialized App IDs and provisioning profiles,
too.

Table 4-1 also shows which technologies require additional configuration (setting entitlements and editing
the information property list) in the Xcode project. Some technologies also require configuration in iTunes
Connect. “Configuring Store Technologies in Xcode and iTunes Connect” (page 79) describes the additional
steps you perform after configuring App IDs and provisioning profiles.

Decide on a naming convention now for the App IDs and provisioning profiles you’ll create, especially if you
develop multiple apps, to help you identify them later in Member Center, Xcode, and on devices.

Creating App IDs
You’ll create an App ID if you can’t use the Xcode wildcard App ID and team provisioning profile for the
technologies you want to use. When you create an App ID, you specify whether it’s an explicit or wildcard App
ID and optionally, enable technologies. For iOS apps, Game Center and In-App Purchase are enabled by default
for an explicit App ID. For Mac apps, In-App Purchase is enabled by default for an explicit App ID. (You can also
enable technologies after you create an App ID.)

Registering an App ID
The steps to enable each technology are similar with a few variations for specific technologies. For iOS apps,
you select a level of protection when you enable data protection.

To register an App ID

1. In Certificates, Identifiers & Profiles, select Identifiers.

2. Under Identifiers, select App IDs.

Provisioning Your App for Store Technologies
Creating App IDs

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

57

http://developer.apple.com/account

3. Click the plus button (+) in the upper-right corner.

Provisioning Your App for Store Technologies
Creating App IDs

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

58

4. Enter a name or description.

Provisioning Your App for Store Technologies
Creating App IDs

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

59

5. Click the corresponding checkboxes to enable the technologies you want to use.

Tip: If a technology is enabled and the checkbox is disabled, then that technology is

automatically enabled for the type of App ID you are creating. If a technology is disabled and

the checkbox is disabled, then that technology is not available for the type of App ID you are

creating.

6. For iOS apps, if you select Data Protection, select the default level of protection.

You select one of the following data protection levels for your app:

 ● Complete Protection. The file is encrypted and inaccessible while the device is locked.

 ● Protected Unless Open. The file is encrypted. A closed file is inaccessible while the device is locked.
After the user unlocks the device, your app can open the file and use it. If the user locks the device
while the file is open, though, your app can continue to access it.

 ● Protected Until First User Authentication. The file is encrypted and inaccessible until after the
device has booted and the user has unlocked it once.

Provisioning Your App for Store Technologies
Creating App IDs

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

60

7. To create an explicit App ID, select Explicit App ID under App ID Suffix and enter the bundle ID in the
Bundle ID text field.

An explicit App ID exactly matches the bundle ID of an app you are building—for example,
com.example.gitakumar.touchfighter. An explicit App ID cannot contain an asterisk (*).

The App ID you enter should match your bundle ID that appears in the target’s Summary pane in Xcode.

8. To create a wildcard App ID, select Wildcard App ID under App ID Suffix and enter a bundle ID search

string in the Bundle ID text field.

A wildcard App ID ends with an asterisk (*). For example, the bundle ID search string com.example.*
matches all apps whose bundle IDs start with com.example.

9. Click Continue.

10. Review the registration information, then click Submit.

11. Click Done.

Provisioning Your App for Store Technologies
Creating App IDs

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

61

Enabling Store Technologies
If you have an existing App ID, including the Xcode wildcard App ID, you can modify the settings to add other
capabilities to your app. For iOS apps, Game Center and In-App Purchase are enabled by default for an explicit
App ID. For Mac apps, In-App Purchase is enabled by default for an explicit App ID.

If you use the team provisioning profile, edit the settings of the wildcard App ID Xcode creates for you. For
iOS apps, this App ID is called Xcode iOSWildcard App ID . For Mac apps, this App ID is called XcodeMacWildcard
App ID .

To enable technologies for an existing App ID

1. In Certificates, Identifiers & Profiles, select Identifiers.

2. Under Identifiers, select App IDs.

3. Select the App ID you want to change, and click Settings.

4. Click the corresponding checkboxes to enable the technologies you want to use.

Provisioning Your App for Store Technologies
Enabling Store Technologies

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

62

http://developer.apple.com/account

Tip: If a technology is enabled and its checkbox is disabled, that technology is automatically

enabled for the type of App ID. If a technology is disabled and its checkbox is disabled, that

technology is not available for the type of App ID.

5. For iOS apps, if you select Data Protection, select the default level of protection under Sharing and
Permissions.

You select one of the following data protection levels for your app:

 ● Complete Protection. Files are encrypted and inaccessible when the device is locked.

 ● Protected Unless Open. Files are encrypted. A closed file is inaccessible when the device is locked.
After the device is unlocked, your app can open and use the file. If the user has a file open and
locks the device (for example, by pressing the sleep button), your app can continue to access the
file.

 ● Protected Until First User Authentication. Files are encrypted and inaccessible until after the
device has booted and has been unlocked once.

6. If a warning dialog appears, click OK.

Later, you’ll regenerate the provisioning profiles that use the App ID (including the team provisioning
profile if you use it).

7. Click Done.

For iOS apps, you can also set the level of protection programmatically for files created by your app, as described
in “Protecting Data Using On-Disk Encryption” in iOS App Programming Guide .

Creating Development Provisioning Profiles
If you created an App ID, use Xcode to create a development provisioning profile containing your new App
ID. You can also use the Xcode wildcard App ID to create a variation of the team provisioning profile (containing
a subset of development certificates and devices).

To create a development provisioning profile, you select an App ID, one or more development certificates, and
one or more devices. If you need to create your development certificates, read “Creating Your Signing
Certificates” (page 24). If you need to register devices, read “Developing Apps Using the Team Provisioning
Profile” (page 38).

Provisioning Your App for Store Technologies
Creating Development Provisioning Profiles

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

63

To create a development provisioning profile

1. In Xcode, choose Window > Organizer to open the Organizer window.

2. Click Devices to display the Devices organizer.

3. Select Provisioning Profiles under Library.

4. Click New (+) at the bottom of the window.

5. Enter your user name and password, and click “Log in.”

6. If you belong to multiple teams, select your team from the Team pop-up menu.

Provisioning Your App for Store Technologies
Creating Development Provisioning Profiles

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

64

7. Enter a provisioning profile name.

8. Select iOS to create an iOS provisioning profile, or select Mac to create a Mac provisioning profile.

9. Select your App ID from the App ID menu.

10. Select your devices from the Devices list.

11. Select your development certificates from the Certificates list.

12. Click Finish.

The provisioning profile should appear in the Devices organizer as valid.

Regenerating the Provisioning Profile
If you edit an App ID, provisioning profiles that contain that App ID become invalid until you regenerate them.
For example, if you edit the Xcode wildcard App ID, any provisioning profile containing it—including the team
provisioning profile—needs to be regenerated. After you regenerate a provisioning profile, update it on all
devices you previously installed it on. The steps to regenerate the team provisioning profile are different from
the steps to regenerate a provisioning profile you created.

Provisioning Your App for Store Technologies
Regenerating the Provisioning Profile

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

65

Regenerating the Team Provisioning Profile
The team provisioning profile, which is managed by Xcode, is not regenerated immediately when you make
changes in Member Center. This is true even when you register devices using Member Center, not Xcode. To
regenerate the team provisioning profile, you refresh the provisioning profiles or make some other change to
the team provisioning profile using Xcode. Xcode regenerates the team provisioning profile and, for iOS apps,
automatically replaces it on any connected iOS devices. For Mac apps, you need to replace the team provisioning
profile in System Preferences yourself.

To regenerate the team provisioning profile managed by Xcode

1. In Xcode, open the Devices organizer.

2. Select Provisioning Profiles under Library.

3. Click Refresh at the bottom of the window.

The team provisioning profile containing your changes should now appear in the Devices organizer as
valid. For iOS apps, Xcode replaces the team provisioning profile on any registered iOS devices.

Provisioning Your App for Store Technologies
Regenerating the Provisioning Profile

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

66

For Mac apps, you need to replace the team provisioning profile on your Mac. (Xcode updates the team
provisioning profile automatically only on an iOS device.)

To replace the team provisioning profile on a Mac

1. In Xcode, open the Devices organizer.

2. Click the disclosure triangle next to your device under Devices.

3. Select Provisioning Profiles under your device.

4. Select the team provisioning profile listed in the detail area.

5. Press Delete (on the keyboard) and click the Delete button.

6. Select Provisioning Profiles under Library.

7. Drag the team provisioning profile to your device under Devices.

Regenerating Provisioning Profiles Managed By You
If a provisioning profile you created is invalid because you edited its App ID, regenerate the provisioning profile
manually using Member Center.

To regenerate a provisioning profile you created

1. In Certificates, Identifiers & Profiles, select Provisioning Profiles.

2. Under the Provisioning Profiles section, select All.

Provisioning profiles that have an Invalid status need to be regenerated.

Provisioning Your App for Store Technologies
Regenerating the Provisioning Profile

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

67

http://developer.apple.com/account

3. Select the invalid provisioning profile.

Provisioning Your App for Store Technologies
Regenerating the Provisioning Profile

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

68

4. Click Edit.

5. Scroll to the bottom of the page, and click Generate.

6. Click Done.

Provisioning Your Development Devices
Except for the iOS team provisioning profile, after you create or regenerate a provisioning profile, you need
to install it on your device. The provisioning profile you use to sign your app needs to be installed on the device
before you can run your app on the device. If you previously installed a provisioning profile on a device, you
need to replace it with the current version. First, you download the latest provisioning profiles from Member
Center, and then you update the provisioning profiles on the device.

If you use the team provisioning profile, you completed this step when you regenerated it, as described in
“Regenerating the Team Provisioning Profile” (page 66).

Provisioning Your App for Store Technologies
Provisioning Your Development Devices

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

69

Refreshing Your Provisioning Profiles Using Xcode
Changes you make in Member Center are not automatically downloaded until you refresh provisioning profiles
in Xcode. To keep the Xcode copies up to date, always perform this step after you regenerate provisioning
profiles in Member Center.

To refresh provisioning profiles

1. In Xcode, open the Devices organizer.

2. Select Provisioning Profiles under Library.

3. Click Refresh at the bottom of the window.

4. Enter your user name and password, and click “Log in.”

The provisioning profile containing your App ID should now appear in the Devices organizer as valid.

Updating Provisioning Profiles on Your Device
It’s your responsibility to maintain provisioning profiles that you manage on your devices. When provisioning
profiles become invalid, you need to remove them from the device. A provisioning profile becomes invalid on
a device if it doesn’t match the provisioning profile in Xcode. To install and remove provisioning profiles, read
“Installing and Removing Provisioning Profiles from Devices” (page 177).

Setting the Bundle ID to Match Your App ID
Next, set your app’s bundle ID in Xcode to match your App ID. If you use the team provisioning profile or the
Xcode wildcard App ID in your provisioning profile, you can skip this step because the Xcode wildcard App ID
matches all your apps.

To set the bundle ID in your project

1. In Xcode, select the target in the project editor.

2. Select the Info tab.

3. Enter the bundle ID in the Value column of the “Bundle identifier” row.

The Xcode project template uses the Product Name build setting, which defaults to your app name,
as the suffix for the default bundle ID. So if you use the app name in your explicit App ID, you can just
replace the surrounding text to set the bundle ID. However, unlike domain names, App IDs and bundle
IDs are case sensitive. If the App ID is lowercase and your app name is not, you need to replace the
entire bundle ID text to match the App ID exactly.

Provisioning Your App for Store Technologies
Setting the Bundle ID to Match Your App ID

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

70

Signing Your App Using Your Development Provisioning Profile
Your last step is to set the Code Signing Identity build setting to your development certificate that resides in
your development provisioning profile. By selecting the development certificate in the provisioning profile,
you are instructing Xcode to install the provisioning profile in your app’s bundle. The operating system uses
the embedded provisioning profile to determine whether your app can launch on the device and use certain
services. Consequently, your app won’t be able to access store technologies if it’s not configured correctly.

Before continuing, review the tasks you should have previously performed in this chapter:

Task

Enable the App ID to use store technologies.

Regenerate the provisioning profile.

Install the provisioning profile on your device.

Then set the code signing identity and run your app.

To set the code signing identity to your development certificate in a provisioning profile

1. In the Xcode project editor, select the target.

Important: If you want to sign multiple targets with the same code signing identity, select the
project, not a target.

Provisioning Your App for Store Technologies
Signing Your App Using Your Development Provisioning Profile

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

71

2. Select the Build Settings tab.

3. Click All.

4. Type Code Signing in the search field in the Build Settings pane of the project editor.

5. From the Code Signing Identity pop-up menu, in the development provisioning profile section, choose
your development certificate.

To run your iOS app on your device, connect your device to your Mac, select your device from the Scheme
pop-up menu, and click Run. To run your Mac app, click Run.

Provisioning Your App for Store Technologies
Signing Your App Using Your Development Provisioning Profile

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

72

Verify Your Steps
You should verify that code signing works, that the App ID is configured correctly, and that the provisioning
profile embedded in your app is correct. However, some technologies won’t be fully configured until you follow
the steps in “Configuring Store Technologies in Xcode and iTunes Connect” (page 79). Nevertheless, you should
troubleshoot any code signing and provisioning problems early.

Later, you can verify the entitlements of the embedded provisioning profile in your app bundle, as described
in “Verify Your Steps” (page 92).

Verify Code Signing
To verify that there are no code signing errors, build and run your app. For iOS apps, connect your device to
your Mac, select it from the Destination pop-up menu, and click the Run button to build, sign, and launch your
app. (For more details on launching your iOS app, read “Launching Your iOS App on the Device” (page 52).)
For Mac apps, click the Run button. If a code signing error occurs, read “Troubleshooting Code Signing
Errors” (page 76).

Verify the App ID Settings in Member Center
The first time you enable store technologies, verify that the App ID and provisioning profile you are using are
configured correctly.

To verify that an App ID is configured for store technologies

1. In Certificates, Identifiers & Profiles, select Identifiers.

2. Under the Identifiers section, select App IDs.

3. Click the row for the App ID you want to verify.

Provisioning Your App for Store Technologies
Verify Your Steps

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

73

http://developer.apple.com/account

Green circles followed by the word Enabled should appear in the Development and Distribution columns
for each technology you want to use.

4. Under the Provisioning Profiles section, select All.

Provisioning Your App for Store Technologies
Verify Your Steps

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

74

The status for the provisioning profile should be Active, as shown below.

5. Select the provisioning profile you are using.

Provisioning Your App for Store Technologies
Verify Your Steps

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

75

Details about the provisioning profile are displayed. The technologies you want to use should be listed
in the Enabled Services row.

Troubleshooting
If you encounter problems code signing, building, and launching your app, follow the steps in this section.

Troubleshooting Code Signing Errors
If your development certificate or team provisioning profile doesn’t appear in the Code Signing Identity menu
(in the Build Settings pane of the project editor), read “Your Provisioning Profile Doesn’t Appear in the Code
Signing Identity Menu” (page 208).

If a code signing error occurs when you build the app, verify that the Code Signing Identity build setting is
correct. Also, check whether the Code Signing Identity build setting is set at the project or target level (target
settings override project settings).

Read “Certificate Issues” (page 208) to troubleshoot other code signing problems.

Troubleshooting Failure to Launch
If you build the app but it fails to launch on the device, the provisioning profile installed on the device may
be wrong. Replace the provisioning profile on the device with the new provisioning profile.

Provisioning Your App for Store Technologies
Troubleshooting

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

76

To replace a provisioning profile on a device

1. In Xcode, open the Devices organizer.

2. Click the disclosure triangle next to your device under Devices.

3. Select Provisioning Profiles under the name of your device.

4. Select the old provisioning profile listed in the detail area.

5. Enter Delete, and click the Delete button.

6. Select Provisioning Profiles under Library.

7. Drag the new provisioning profile to your device under Devices.

Development Provisioning Profiles in Depth
An app needs to match the installed development provisioning profile to launch. When you are ready to run
your app, you sign it using your development certificate contained in the development provisioning profile.
Then you install the provisioning profile and the app on the device. The app successfully launches if the app’s
bundle ID matches the App ID, the signature matches a development certificate, and the device is in the device
list contained in the provisioning profile.

Provisioning Your App for Store Technologies
Development Provisioning Profiles in Depth

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

77

Therefore, a development provisioning profile allows a team member to build an app on his or her Mac and
share it with other team members, who can then run that app on their devices. For small teams, you might
have one development provisioning profile (for example, the team provisioning profile) containing all team
member devices and certificates. For larger teams, you can create multiple development provisioning profiles
for specific purposes and groups.

When you create a development provisioning profile, you can limit any of these three areas to provide additional
security:

 ● With a wildcard App ID, you can limit the profile to a subset of your apps; with an explicit App ID, you can
limit the profile to a single app.

 ● You can restrict the developers allowed to sign an app using the profile.

 ● You can restrict the devices that the app runs on.

Recap
In this chapter you learned how to enable store technologies for an App ID and create or regenerate a
development provisioning profile containing the App ID using Member Center. These same steps work for
wildcard and explicit App IDs. The next chapter describes additional configuration of store technologies using
Xcode and iTunes Connect.

Provisioning Your App for Store Technologies
Recap

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

78

This chapter describes the additional setup required to use store technologies. For example, you need to enable
iCloud entitlements in your Xcode project to use it. Newsstand and routing apps require some configuration
in the information property list. You need to add frameworks to use some of the technologies. Finally, some
technologies require additional setup in iTunes Connect. This chapter covers the setup for all store technologies,
even those that don’t require any provisioning.

Table 4-1 (page 56) shows which assets need to be configured to use each store technology. For the steps to
edit your App ID and provisioning profile in Member Center, read “Provisioning Your App for Store
Technologies” (page 54).

About Entitlements
An entitlement is a single right granted to a particular app, tool, or other executable that gives it additional
permissions above and beyond what it would ordinarily have. The term entitlement is most commonly used
in the context of a sandbox, and to a lesser degree for an App ID. Regardless of the location, an entitlement is
a piece of configuration information included in your app's code signature—telling the system to allow your
app to access certain resources or perform certain operations. In effect, an entitlement extends the sandbox
and capabilities of your app to allow a particular operation to occur. You set some entitlements for an App ID
in Member Center—for example, by enabling store technologies—and others in the Xcode project.

Configuring iCloud
iCloud storage allows you to share the user’s data among multiple instances of your app running on different
iOS and Mac OS X devices. Your app needs to be provisioned to use iCloud, which includes setting entitlements
in your Xcode project.

Before continuing, review the tasks that should be complete before you configure iCloud in Xcode:

Task

Enable the App ID to use iCloud.

Create or regenerate a development provisioning profile containing the App ID.

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

79

Configuring Store Technologies in Xcode and
iTunes Connect

Task

Provision your development device.

Code sign your app using the development provisioning profile.

Set iCloud entitlements in your Xcode project.

You should have enabled your App ID to use this technology, as described in “Provisioning Your App for Store
Technologies” (page 54). Because iCloud doesn’t require an explicit App ID, you can use the team provisioning
profile during development. After you do this, launch Xcode to set the entitlements.

To learn more about using iCloud storage, read Your Third iOS App: iCloud and iCloud Design Guide .

Enabling iCloud Entitlements
Before you can configure iCloud key-value storage or iCloud document storage, you need to enable iCloud
entitlements in Xcode.

To enable iCloud entitlements

1. In Xcode, select the target in the project editor.

2. Select the Summary tab and scroll down to the Entitlements section.

3. If entitlements are not enabled, select Use Entitlements File.

4. In the iCloud section, select Enable iCloud.

Configuring Store Technologies in Xcode and iTunes Connect
Configuring iCloud

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

80

Configuring iCloud Key-Value Storage
iCloud key-value storage allows an app to share small amounts of data with other instances of itself running
on the user’s other devices.

To configure iCloud key-value storage

1. In the iCloud entitlements area on the Summary tab in the project editor, select “Use store with
identifier.”

The identifier defaults to your bundle ID.

2. If you want to change the identifier, enter it in the text field adjacent to the “Use store with identifier”
checkbox.

To learn how to use iCloud key-value storage for preferences, read iCloud Design Guide .

Configuring iCloud Document Storage
iCloud document storage is used to store user documents and app data in the user’s iCloud account. Each app
has a container in the user’s iCloud account identified by its App ID. An app can access containers belonging
to other apps created by your team as well.

To configure iCloud document storage, add one or more iCloud containers. Add your bundle identifier to the
container list or add a wildcard App ID to match a set of App IDs. The first container identifier cannot be a
wildcard App ID. For guidance on selecting iCloud containers, read iCloud Design Guide .

Configuring Store Technologies in Xcode and iTunes Connect
Configuring iCloud

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

81

To add an iCloud container

1. In the iCloud entitlements area on the Summary tab in the project editor, click the Add button (+) at
the bottom of the Ubiquity Containers field.

The first time you do this, the bundle ID is added to the list and appears highlighted.

2. Enter the App ID for the container you want to add.

To delete a container, select it from under the Ubiquity Containers field, and click the Delete button (-).

Configuring Push Notifications
Apple Push Notification service (APNs) allows an app that is not running in the foreground to notify the user
that it has information for the user. Your app needs to be provisioned to use push notifications and you can
only download client SSL certificates after you register your App ID.

Before continuing, review the tasks that should be complete before you configure push notifications in Xcode:

Task

Create or edit the settings of an explicit App ID.

Create or regenerate a development provisioning profile containing the explicit App ID.

Provision your development device.

Configuring Store Technologies in Xcode and iTunes Connect
Configuring Push Notifications

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

82

Task

Code sign your app using the development provisioning profile.

Generate a client SSL certificate for development.

Install the client SSL certificate and key on your server.

First, you need to create an explicit App ID and provisioning profile, as described in “Provisioning Your App
for Store Technologies” (page 54). After you register your explicit App ID, you can generate client SSL certificates
and install them on your server.

To learn more about push notifications, read Local and Push Notification Programming Guide .

Creating Push Notification Client SSL Certificates
You use Member Center to generate your push notification client SSL certificates. A client SSL certificate allows
your notification server to connect to the APNs. Each App ID is required to have its own client SSL certificate.
Similar to signing certificates, you use separate client SSL certificates for development and distribution.

Note: The option to create an APNs client SSL certificate is not available if you don’t have an App
ID that enables APNs.

To generate client SSL certificates

1. In Certificates, Identifiers & Profiles, select Certificates.

Configuring Store Technologies in Xcode and iTunes Connect
Configuring Push Notifications

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

83

http://developer.apple.com/account

2. Click the plus button (+) in the upper-right corner.

Configuring Store Technologies in Xcode and iTunes Connect
Configuring Push Notifications

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

84

3. Select the checkbox next to “Apple Push Notification service SSL” either under Development or
Distribution, and click Continue.

4. Select an App ID from the App ID pop-up menu and click Continue.

5. To create a certificate request, follow the instructions on the page that appears, and click Continue.

6. Click Choose File.

7. In the dialog that appears, select the certificate request file (with a .certSigningRequest extension)
and click Choose.

Configuring Store Technologies in Xcode and iTunes Connect
Configuring Push Notifications

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

85

8. Click Generate.

Installing Client SSL Certificates
For how to install the client SSL certificate and key on a server, read “Provisioning Procedures” in Local and Push
Notification Programming Guide .

Configuring Game Center
Game Center is Apple’s social gaming network. It allows players to connect their devices to the Game Center
service and exchange information. Before your app can use Game Center, it must first be provisioned to use
Game Center and configured in iTunes Connect. You also add the Game Kit framework to your Xcode project
and for Mac apps, set some network entitlements.

Before continuing, review the tasks that should be complete before you configure Game Center in Xcode:

Configuring Store Technologies in Xcode and iTunes Connect
Configuring Game Center

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

86

Task

Create or edit the settings of an explicit App ID.

Create or regenerate a development provisioning profile containing the explicit App ID.

Provision your development device.

Code sign your app using the development provisioning profile.

For Mac apps, set the network entitlements in your Xcode project.

Link to the Game Kit framework.

Configure your game app in iTunes Connect.

You need to create an explicit App ID and provisioning profile, as described in “Provisioning Your App for Store
Technologies” (page 54). For iOS apps, Game Center is automatically enabled for all explicit App IDs. For Mac
apps, you need to specifically enable Game Center when you create the App ID.

Next, you configure Game Center in your Xcode project. For Mac apps, you may need to set the network
entitlements in the App Sandbox section, located in the Summary pane in Xcode. If your app opens network
connections, it needs to allow outbound network connections; for this, set the
com.apple.security.network.client entitlement. If your app listens for network connections, it needs
to allow incoming network connections; for this, set thecom.apple.security.network.server entitlement.

Then link to the Game Kit framework and begin writing code that uses Game Kit APIs. To learn more about using
Game Center, read Game Center Programming Guide .

To configure your app in iTunes Connect, read “Creating an App Record” (page 153) to create the app record
(enter your explicit App ID), and read “Game Center” in iTunes Connect Developer Guide to configure it.

Configuring In-App Purchase
In-App Purchase embeds a store directly into your app by allowing you to connect to the store and securely
process payments from the user. You can use In-App Purchase to collect payment for enhanced functionality
or additional content usable by your app. You need to provision your app to use In-App Purchase, add the
Store Kit framework to your Xcode project, and configure it in iTunes Connect. You also use iTunes Connect
to create your in-app purchases.

Before continuing, review the tasks that should be complete before you use In-App Purchase:

Configuring Store Technologies in Xcode and iTunes Connect
Configuring In-App Purchase

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

87

Task

Create or edit the settings of an explicit App ID.

Create or regenerate a development provisioning profile containing the explicit App ID.

Provision your development device.

Code sign your app using the development provisioning profile.

Link to the Store Kit framework.

Enter the App ID in iTunes Connect and create in-app purchases for testing.

If you have not already done so, create an explicit App ID, as described in “Provisioning Your App for Store
Technologies” (page 54). In-App Purchase is automatically enabled for all explicit App IDs.

Then link to the Store Kit framework and refer to In-App Purchase Programming Guide for how to write your code.

To create an app record and enter the explicit App ID in iTunes Connect, read “Creating an App Record” (page
153). To create in-app purchases, read “In-App Purchase” in iTunes Connect Developer Guide .

Configuring Passbook for iOS Apps
Presents digital representations of information—such as a coupon, ticket for a show, or boarding pass—that
allow users to redeem a real-world product or service. You can use Passbook in several ways:

 ● To create, distribute, and update passes, register a pass type identifier and request a pass-signing certificate.
You don't need an app or an entitlement to do this. For details, read Passbook Programming Guide .

 ● To let users add passes to the Passbook from your app, use PassKit framework. You don’t need to set
Passbook entitlements to do this.

 ● To access the user’s passes in your app, follow the steps below.

Before continuing, review the tasks that should be complete before you configure Passbook:

Task

Enable the App ID to use Passbook.

Configuring Store Technologies in Xcode and iTunes Connect
Configuring Passbook for iOS Apps

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

88

Task

Create or regenerate a development provisioning profile containing the App ID.

Provision your development device.

Code sign your app using the development provisioning profile.

Link to the PassKit framework.

If needed, register a pass type identifier.

Set Passbook entitlements.

You should have enabled your App ID to use this technology, as described in “Provisioning Your App for Store
Technologies” (page 54). Because Passbook doesn’t require an explicit App ID, you can use the team provisioning
profile during development.

After performing these steps, link to the Pass Kit framework and read Passbook Programming Guide for how to
set Passbook entitlements. To create a pass type identifier, read “Requesting a Pass Type Identifier” in Passbook
Programming Guide .

Configuring Data Protection for iOS Apps
Data protection adds a level of security to files stored on-disk by your app. Data protection uses the built-in
encryption hardware present on specific devices to store files in an encrypted format on disk. Your app needs
to be provisioned to use data protection.

Before continuing, review the tasks that should be complete before you use data protection:

Task

Enable the App ID to use data protection.

Create or regenerate a development provisioning profile containing the App ID.

Set the default level of data protection.

Provision your development device.

Configuring Store Technologies in Xcode and iTunes Connect
Configuring Data Protection for iOS Apps

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

89

Task

Code sign your app using the development provisioning profile.

Set the level of protection programmatically for files created by your app.

You should have enabled your App ID to use data protection, as described in “Provisioning Your App for Store
Technologies” (page 54), and selected a default level of protection. Data protection doesn’t require an explicit
App ID so you can use the team provisioning profile during development. No other configuration is required
in your Xcode project to use data protection but you can in addition change this setting in your code.

You can programmatically set the level of protection for files created by your app, as described in “Protecting

Data Using On-Disk Encryption” in iOS App Programming Guide . Your app may override these App ID settings:

 ● Complete Protection. Files are encrypted and inaccessible when the device is locked.

 ● Protected Unless Open. Files are encrypted. A closed file is inaccessible when the device is locked. After
the device is unlocked, your app can open and use the file. If the user has a file open and locks the device
(for example, by pressing the sleep button), your app can continue to access the file.

 ● Protected Until First User Authentication. Files are encrypted and inaccessible until after the device has
booted and has been unlocked once.

Configuring Routing Apps for iOS Apps
Apps that are able to display point-to-point directions can register as routing apps and make those directions
available to Maps and other apps. Use Xcode and iTunes Connect to configure your routing app.

Before continuing, review the tasks that you need to perform to configure a routing app:

Task

Write the code to provide routing directions.

Enable this feature in Xcode.

Create an app record in iTunes Connect.

Upload a binary of your app to the store.

Upload your app’s geographic coverage file in iTunes Connect.

Configuring Store Technologies in Xcode and iTunes Connect
Configuring Routing Apps for iOS Apps

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

90

The geographic coverage file defines the regions that your app supports. You can upload the geographic
coverage file when you first create the iTunes Connect app record or later after you submit a binary.

Providing Routing Directions
Read “Providing Directions” in Location Awareness Programming Guide to learn how to create a routing app.

Enabling Routing Apps in Xcode
Enable routing apps in your Xcode project and select one or more supported modes.

To configure Map Integration settings in the Xcode project

1. In Xcode, select the project and your target to display the project editor.

2. Click the Summary tab.

3. Select “Accept transit routing requests” to enable the routing app feature.

4. Select the supported modes from the checkboxes below.

You are required to select one or more supported modes.

Creating an App Record in iTunes Connect
Follow the steps in “Creating an App Record” (page 153). Optionally, you can upload the geographic coverage
file when you create the app record, or later when you upload a binary.

Configuring Store Technologies in Xcode and iTunes Connect
Configuring Routing Apps for iOS Apps

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

91

Submitting a Binary to the Store
Follow the steps in “Submitting Your App” (page 133) to upload a binary to iTunes Connect.

Uploading the Geographic Coverage File to iTunes Connect
If you enable routing apps and submit a binary, Apple will not start the approval process until you upload the
geographic coverage file.

To upload the geographic coverage file after you submit your binary

1. Log in to iTunes Connect.

2. On the iTunes Connect homepage, click Manage Your Applications.

3. Locate the app you want to edit, and click the large icon or app name.

4. Click View Details for the version of your app that you want to edit.

5. Click the Edit button that appears next to the Metadata and Uploads section.

6. Click the Choose File button under Routing App Coverage File.

7. Locate the file and click Choose.

8. Click Upload File.

If the file is not formatted correctly, a message appears at the top of the page.

Configuring Newsstand for iOS Apps
Newsstand enables an app to organize a user’s magazine and newspaper app subscriptions into a folder. To
use Newsstand, just add some keys to the information property list and add artwork to your Xcode project.
Refer to Newsstand for Developers for more information on creating a Newsstand app. Read “Newsstand Icons”

in iOS Human Interface Guidelines for how to add Newsstand cover icons to your Xcode project.

Verify Your Steps
Some entitlements (for example, App Sandbox entitlements) are set in your Xcode project and others are set
in the provisioning profile. You can check if the signed app has the correct entitlements by examining the
app’s signature. If there are any discrepancies, you can examine the embedded provisioning profile located in
the app binary.

Configuring Store Technologies in Xcode and iTunes Connect
Configuring Newsstand for iOS Apps

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

92

https://itunesconnect.apple.com
http://https://developer.apple.com/devcenter/ios/newsstand/

To verify the entitlements of a signed app

1. In Xcode, select your project in the project navigator.

2. Click the disclosure triangle next to the project to reveal its contents.

3. Click the disclosure triangle next to Products to reveal the binary.

4. Control-click the binary and select “Show in Finder” to go to the Xcode build location in the Finder.

5. Launch Terminal (located in ~/Applications/Utilities) and enter this text followed by a space
character (do not press Return):

codesign -d --entitlements -

6. In the Finder, drag the app binary to Terminal.

7. Press Return.

For example, the output for an iOS app that is enabled for iCloud key-value storage contains the
keychain-access-groups entitlement key. The output for a Mac app that is enabled for App Sandbox
contains the com.apple.security.app-sandbox entitlement key.

Configuring Store Technologies in Xcode and iTunes Connect
Verify Your Steps

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

93

If the app’s entitlements are different than what you have configured, verify that the embedded provisioning
profile is correct. First, you need to locate the embedded provisioning profile.

To locate the embedded provisioning profile in the app binary

1. In Xcode, select your project in the project navigator.

2. Click the disclosure triangle next to the project to reveal the contents.

3. Click the disclosure triangle next to Products to reveal the binary.

4. Control-click the binary and select “Show in Finder” to go to the Xcode build location in the Finder.

5. In the Finder, Control-click the binary and select Show Package Contents from the menu.

Configuring Store Technologies in Xcode and iTunes Connect
Verify Your Steps

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

94

For iOS apps, a provisioning profile called embedded.mobileprovision appears in the Finder window.
For Mac apps, the embedded file is called embedded.provisionprofile.

To verify the entitlements of the embedded provisioning profile

1. Launch Terminal (located in ~/Applications/Utilities) and enter this text (do not press Return):

security cms -D -i

Configuring Store Technologies in Xcode and iTunes Connect
Verify Your Steps

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

95

2. In the Finder, drag the provisioning profile in the app binary to Terminal.

3. Press Return.

This command outputs a property list in XML format.

4. Locate the Entitlements key in the output and verify that the application-identifier key has
the correct entitlements.

For example, the following listing shows an iOS app that is enabled for data protection, Passbook, and
iCloud. iCloud entitlements begin with the text com.apple.developer.ubiquity.

<key>Entitlements</key>

<dict>

<key>application-identifier</key>

<string>AYUS77G8A4.com.gitakumar.touchfighter</string>

<key>com.apple.developer.default-data-protection</key>

<string>NSFileProtectionComplete</string>

<key>com.apple.developer.pass-type-identifiers</key>

<array>

<string>AYUS77G8A4.*</string>

</array>

<key>com.apple.developer.ubiquity-container-identifiers</key>

<array>

<string>AYUS77G8A4.*</string>

Configuring Store Technologies in Xcode and iTunes Connect
Verify Your Steps

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

96

</array>

<key>com.apple.developer.ubiquity-kvstore-identifier</key>

<string>AYUS77G8A4.*</string>

<key>get-task-allow</key>

<true/>

<key>keychain-access-groups</key>

<array>

<string>AYUS77G8A4.*</string>

</array>

</dict>

See codesign and security for more ways to use these commands.

Recap
In this chapter you learned how to configure store technologies in Xcode and iTunes Connect. Some technologies
required that you set entitlements and edit the information property list in your Xcode project, add a framework
to your Xcode project, or configure your app in iTunes Connect.

Configuring Store Technologies in Xcode and iTunes Connect
Recap

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

97

Before you distribute your app for testing or submit it to the store, complete the configuration of your Xcode
project. When you create a new Xcode project, you choose a template that most closely corresponds to the
kind of app you want to make, and you customize some initial settings for the app. Later, you can change
required app information and assets as needed for the store. You set entitlements depending on the capabilities
of your app. For example, all Mac apps submitted to the store need to have sandboxing enabled. Some Apple
technologies require a combination of code you write and data you configure to operate properly. Some of
the data you configure about your app is distributed between your Xcode project, Member Center, and iTunes
Connect. This chapter explains the properties stored in the Xcode project that should be set before you distribute
your app.

About Bundle IDs
A bundle ID precisely identifies a single app. A bundle ID is used during the development process to provision
devices and by the operating system when the app is distributed to customers. For example, the preferences
system uses this string to identify the app for which a given preference applies. In contrast, Launch Services
uses the bundle ID to locate an app capable of opening a particular file, using the first app it finds with the
given identifier. The bundle ID is also used to validate an app’s signature.

The bundle ID string must be a uniform type identifier (UTI) that contains only alphanumeric characters
(A-Z,a-z,0-9), hyphen (-), and period (.). The string should be in reverse-DNS format. For example, if your
company’s domain is Ajax.com and you create an app named Hello, you could assign the string
com.Ajax.Hello as your app’s bundle ID.

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

98

Configuring Your Xcode Project for Distribution

During the development process, you use an app’s bundle ID in many different places to identify the app.
Figure 6-1 shows the most common places where an app’s bundle ID is used during the development process.

Figure 6-1 Common uses for an app’s bundle ID

Bundle ID

Xcode project

iTunes Connect

iCloud
container ID

App ID

 ● The bundle ID itself is stored in the information property list file (Info.plist) inside your project. This
file is later copied into your app’s bundle when you build the project.

 ● When you are ready to publish an app, you use the bundle ID to identify the app in iTunes Connect. The
store submission process correlates the bundle ID from the app you submit with the data you provide in
iTunes Connect.

 ● When developing your app, you need a development provisioning profile with an App ID that is compatible
with the app’s bundle ID. However, unlike domain names, bundle IDs are case sensitive. If the App ID is
lowercase, your bundle ID needs to be lowercase, too.

 ● When you implement iCloud support in your app, the container IDs you specify are based on the bundle
IDs of one or more apps.

Configuring Your Xcode Project for Distribution
About Bundle IDs

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

99

Before You Begin
Most of the options discussed in this chapter, including enabling entitlements, are located in the project editor
for your target. In Xcode, choose View > Navigators > Show Project Navigator to open the project navigator.
Select your target in the Targets section of the second sidebar to display the project editor. Click the Summary,
Info, or Build Settings tab to view these properties.

Setting Properties When Creating Your Xcode Project
An assistant guides you through the process of creating an Xcode project. First, you select a template for your
project. Starting with the right template helps speed the development process. The assistant also prompts
you to enter information about your app that is used to determine your app’s capabilities and distribute it to
customers. If you do not have this information when you create the project, you can set these properties later.
Some of the data in the Xcode project is similar to the data you enter in iTunes Connect, but only the bundle
ID needs to match the bundle ID you enter in iTunes Connect before you can submit your app to the store.

Configuring Your Xcode Project for Distribution
Before You Begin

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

100

Note: If you do not have an Xcode project, read the tutorial in Start Developing iOS Apps Today or
Start Developing Mac Apps Today to learn how to create one. You cannot perform the tasks in this
book without first creating an Xcode project that builds and runs an app.

For iOS apps, you see a dialog similar to this when creating an Xcode project from a template:

The product name is the name of your app as it will appear to customers and should match the app name
you enter later in iTunes Connect. It is the name that will appear in Springboard when the app is installed. The
product name cannot be longer than 255 bytes and can be no fewer than 2 characters and should not contain
any spaces.

The organization name is an attribute of the Xcode project and is used in boilerplate text throughout your
project folder. For example, the organization name is used in the source and header file copyright strings. The
organization name in your Xcode project is not the same as the company name that you enter later in iTunes
Connect.

The product name and company identifier you enter are concatenated together to create the default bundle
ID using reverse domain name (reverse DNS) notation. The bundle ID needs to be unique to your app.

For iOS apps, you can select the types of devices you support from the Devices pop-up menu. For Mac apps,
you can select the Mac App Store categories from a pop-up menu.

Configuring Your Xcode Project for Distribution
Setting Properties When Creating Your Xcode Project

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

101

The other values used by the Xcode template are sufficient for building and running your app locally, but you’ll
need to finalize properties, such as the bundle ID, later. Also, the assistant doesn’t set all required properties
for the store. You will need to complete the basic store configuration before you submit. Ideally, you will
complete this configuration before you distribute your app for testing too.

After your app is released, you cannot change some of this metadata, so you want to choose your settings
carefully. Refer to “Editing and Updating App Information” in iTunes Connect Developer Guide to learn which app
states cause some properties to be locked in iTunes Connect.

Configuring Application Target Settings
The application target settings appear in the target’s Summary pane. To display the Summary pane, select the
target in the project navigator and click the Summary tab. For iOS apps, the application target settings appear
in the iOS Application Target section.

Configuring Your Xcode Project for Distribution
Configuring Application Target Settings

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

102

For Mac apps, they appear in the OS X Application Target section.

Setting the Mac Application Category
Set the category under which your app will be listed on the Mac App Store. The category you select should
match the category you later select in your iTunes Connect app record.

To set the application category

1. In the project navigator, select the project and your target to display the project editor.

2. Click the Summary tab.

3. Choose the category from the Application Category pop-up menu.

iOS app categories are set in iTunes Connect only. Read “Choosing Primary and Secondary Categories” in iTunes
Connect Developer Guide for more details on app categories.

Setting the Bundle ID
The bundle ID (called a bundle identifier in Xcode) is used by Xcode, the operating system, and the store to
uniquely identify an app. A Mac app and iOS app cannot share the same bundle ID either. The bundle ID is
also used to match a team’s App ID and any associated provisioning profiles. Later, the bundle ID needs to be
the same as the bundle ID you enter in iTunes Connect.

To set the bundle ID

1. In the project navigator, select the project and your target to display the project editor.

Configuring Your Xcode Project for Distribution
Configuring Application Target Settings

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

103

https://itunesconnect.apple.com
https://itunesconnect.apple.com

2. Click the Info tab.

3. Enter the bundle ID in the Value column of the “Bundle identifier” row.

The default bundle ID in your Xcode project is a string formatted as a reverse-domain—for example,
com.MyCompany.MyProductName. The Xcode project template uses the Product Name build setting,
which defaults to your app name, as the product name in this string. For example, the bundle ID for
an app called TrackMix resolves to com.MyCompany.TrackMix. So it is sufficient to replace the
com.MyCompany in the “Bundle identifier” row with your domain name.

For Mac apps, ensure that every bundle ID is unique within your app bundle. For example, if your app bundle
includes a helper app, ensure that you do not include two copies of a framework that is used by both your
app and the helper app.

Setting the Version Number and Build String
The version number is a two-period-separated list of positive integers, as in 4.5.2. The first integer represents
a major revision, the second a minor revision, and the third a maintenance release.

The version number is shown in the store and that version should match the version number you enter later
in iTunes Connect. The build string represents an iteration (released or unreleased) of the bundle and can
contain a mix of characters and numbers. For example, the build is shown in the About window of a Mac app.
The user clicks the version number on the About window to toggle between the version number and the build
string. For details on possible values, see “CFBundleShortVersionString” in Information Property List Key Reference
and “CFBundleVersion” in Information Property List Key Reference .

For iOS apps, you should update the build string whenever you distribute a new build of your app for testing.
iTunes will recognize that the build string changed and properly sync the new iOS App Store Package to the
device. Read “Beta Testing Your iOS App” (page 117) for how to configure your app for testing.

Set the version number and build string in the Summary pane in the project editor.

To set the version number and build string

1. In the project navigator, select the project and your target to display the project editor.

2. Click the Summary tab.

3. Enter the version number in the Versions text field, and enter the build string in the Build text field.

Configuring Your Xcode Project for Distribution
Configuring Application Target Settings

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

104

Setting the Target iOS Devices
The Devices setting identifies the type of devices you want an iOS app to run on. There are two device types:
iPhone and iPad. The iPhone type includes iPhone and iPod touch devices. The iPad type includes all iPad and
iPad mini devices.

To set the target devices

1. In the project navigator, select the project and your target to display the project editor.

2. Click the Summary tab.

3. From the Devices pop-up menu, choose iPhone, iPad, or Universal (to target both families).

For more information on configuring your app for iPhone, iPad, or both device families, see “Advanced App

Tricks” in iOS App Programming Guide .

Setting the Deployment Target
The deployment target setting specifies the lowest operating-system version that your app will run on. For
example, the lowest available setting for iPad apps is iOS 3.2.

There are several strategies for choosing the deployment target when developing your app. Each version of
iOS or OS X includes features and capabilities not present in earlier versions. As new versions are published,
some users may upgrade immediately, while other users may wait before moving to the latest version. You
can target the latest version taking full advantage of all the new features but limiting the app to only users

Configuring Your Xcode Project for Distribution
Configuring Application Target Settings

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

105

running the latest version. Or you can target an earlier version making your app available to more users but
limiting the features you can use in the app. Another approach is to target an earlier version but use weak
linking to determine at runtime whether later version features are available before using them.

For details on weak linking, read “Weak Linking and Apple Frameworks” in SDK Compatibility Guide .

To set the target version

1. In the project navigator, select the project and your target to display the project editor.

2. Click the Summary tab.

3. Choose the version you want to target from the Deployment Target pop-up menu.

Xcode sets the Minimum System Version key in the app’s information property list to the deployment target you
choose. When you publish your app to the store, it uses this property value to indicate which versions your
app supports.

Note: The SDK version, not the deployment target, determines which features you can use in an
app. If the SDK you’re using to build the app is more recent than the app’s deployment target, Xcode
displays build warnings when it detects that your app is using a feature that’s unavailable in the
deployment target.

You must also ensure that the symbols you use are available in the app’s runtime environment. To
check for their availability, use the techniques described in SDK Compatibility Guide .

Adding App Icons and Launch Images
App icons and launch images are stored in the app bundle, not uploaded as separate assets to iTunes Connect.
The operating system uses these images in various locations on a device to represent your app. In general,
artwork displayed by the operating system resides in the bundle, and artwork displayed by iTunes is uploaded
to iTunes Connect.

For all artwork, keep the file size as small as possible for a positive purchase experience for your users. For iOS
apps, see “Custom Icon and Image Creation Guidelines” in iOS Human Interface Guidelines for the sizes of all required
app icons, launch images, and other icons. See “Creating Great Icons for Any Resolution” in OS X Human Interface
Guidelines for all the required Mac app icons. This table includes icon sizes that may be used on the Mac App
Store. To take advantage of Retina displays, provide high-resolution images for each device you support.

Read “Before You Begin” in iTunes Connect Developer Guide for the specification of screenshots that you upload
later using iTunes Connect.

Configuring Your Xcode Project for Distribution
Adding App Icons and Launch Images

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

106

Setting App Icons
Your app needs an app icon to represent it and pass validation tests. For iOS apps, read “App Icons” in iOS App
Programming Guide to create separate icon files for different device resolutions. For Mac apps, read “Provide

High-Resolution Versions of All App Graphics Resources” in High Resolution Guidelines for OS X to create your icon
file, which needs to be in ICNS format.

To add an app icon

1. In the project navigator, select the project and your target to display the project editor.

2. Click the Summary tab.

3. Drag the icon file to the App Icon image well.

For iOS apps, the App Icon image wells are located in the iPhone/iPod Deployment Info section in the
Summary pane. For Mac apps, the single App Icon image well is located in the OS X Application Target
section at the top of the pane.

Creating and Setting iOS Launch Images
Launch images are displayed while your app is launching on iOS. A launch image matching the device resolution
appears as soon as the user taps your app icon. Use screenshots to create your app’s launch images.

Configuring Your Xcode Project for Distribution
Adding App Icons and Launch Images

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

107

Note: Although the launch image includes the status bar as it looked when the screenshot was
captured, iOS replaces it with the current status bar when your app launches.

Capturing Screenshots on Your Device and Setting Launch Images Directly in Xcode
Follow these steps to capture screenshots of your app while it’s connected to your Mac.

To capture a screenshot on your connected iOS device

1. On the device, configure the screen the way you want it.

2. In the Devices organizer, select Screenshots in the device.

3. Click New Screenshot.

After you capture a screenshot, you can make it your app’s launch image.

To set a screenshot as your iOS app’s launch image

1. In the Devices organizer, select Screenshots for a device or for the Library section.

Configuring Your Xcode Project for Distribution
Adding App Icons and Launch Images

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

108

2. Select an image.

3. Click “Save as Launch Image.”

4. Specify the name of the image and the target app, and click Next.

To get a PNG file of the screenshot, you drag it from the Devices organizer to the desktop.

Capturing Screenshots Directly on Your Device
Alternatively, you can capture screenshots directly on your device and import them into your Mac using the
iPhoto application.

To capture a screenshot on your device, you press the Lock and Home buttons simultaneously. Your screenshot
is saved in the Saved Photos album in the Photos app.

Copy the screenshot from the device to your Mac and follow the steps in “Setting Launch Images in the Project
Editor” to set the launch image.

Setting Launch Images in the Project Editor
Alternatively, you can set the launch images in the project editor.

Configuring Your Xcode Project for Distribution
Adding App Icons and Launch Images

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

109

To set launch images in the project editor

1. In the project navigator, select the project and your target to display the project editor.

2. Click the Summary tab.

3. Scroll down to the Launch Images section under iPhone/iPad Deployment Info.

4. Drag the launch images to the corresponding image wells.

Configuring Entitlements
To protect your app from being compromised by a hacker who might damage the user’s system, you give
permissions, known as entitlements , to your app to perform specific functions. An entitlement is a key-value
pair whose value you can set to specify a capability or security permission. This chapter describes entitlements
you configure in your Xcode project for certain technologies supported by the store. Refer to Entitlement Key
Reference for a complete list of app entitlements.

You configure entitlements for each target in the Xcode project for your product. For example, if you have a
main app and multiple helper apps in one Xcode project, you need to configure entitlements for each target
in the project. When you enable entitlements, Xcode adds a file with entitlement key-value pairs to your target.

Configuring Your Xcode Project for Distribution
Configuring Entitlements

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

110

The default name of the file is your project name with the extension .entitlements. You can configure
entitlements—for example, for iCloud storage or sandboxing—using either the property list editor or the
project editor to edit this file.

For entitlements to take effect, you need to code sign your app, as described in “Creating Your Signing
Certificates” (page 24). Some technologies, such as iCloud and Game Center, require further configuration.
You need a provisioning profile containing an App ID that enables these technologies. Read “Configuring Store
Technologies in Xcode and iTunes Connect” (page 79) for complete steps on how to configure specific
technologies.

Before you can configure entitlements for specific technologies, you need to enable entitlements.

To enable entitlements

1. In Xcode, select the target in the project editor.

2. Select the Summary tab and scroll down to the Entitlements section.

3. Select the Use Entitlements File option.

Xcode adds an entitlements file to your project and automatically enters default values for some
entitlements.

4. If you want to change the entitlements file name, enter a different suffix in the Use Entitlements File
text field.

Configuring Your Xcode Project for Distribution
Configuring Entitlements

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

111

Configuring App Sandbox for Mac Apps
Sandboxing provides the last line of defense against stolen, corrupted, or deleted user data if malicious code
exploits your app. It also minimizes damage from coding errors in your app or in frameworks you link against.
Simply enabling sandboxing provides the maximum level of restrictions on how an app can interact with the
rest of the system. All apps submitted to the Mac App Store are required to use sandboxing. Therefore, if you
plan to submit your app to the Mac App Store, you should enable sandboxing during development.

You configure sandboxing by enabling this feature and then optionally granting permission for specific types
of functions.

To configure App Sandbox

1. In Xcode, select the target in the project editor.

2. Select the Summary tab and scroll down to the Entitlements section.

3. Select the Use Entitlements File option.

Xcode adds an entitlements file to your project and automatically enters default values for some
entitlements. When you enable entitlements, App Sandbox is automatically enabled.

Configuring Your Xcode Project for Distribution
Configuring App Sandbox for Mac Apps

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

112

4. Select Enable App Sandboxing in the App Sandbox section.

5. Use the remaining App Sandbox entitlements to describe the minimum set of capabilities the target
needs to do its job.

For a complete description of App Sandbox entitlements, refer to Entitlement Key Reference . If you are enabling
sandboxing for an existing app, read App Sandbox Design Guide to learn the new locations a sandboxed app
can access.

Editing the Information Property List
Occasionally, you may need to edit the information property list directly to set keys that don’t appear elsewhere
in Xcode. The name of this file is typically ProjectName-Info.plist.

To edit the information property list

1. In Xcode, select the project in the project navigator.

2. Click the disclosure triangle next to the ProjectName folder to reveal its contents.

3. Click the disclosure triangle next to the Supporting Files subfolder to reveal its contents.

Configuring Your Xcode Project for Distribution
Editing the Information Property List

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

113

4. Select the ProjectName-Info.plist file.

The information property list is displayed to the right in a property list editor.

5. Double-click in the value column and in the row of the key you want to edit.

6. Enter a new value for the key.

Refer to Property List Editor Help for how to edit other cells in a property list.

Setting the Copyright Key for Mac Apps
Make sure that your information property list file contains a valid value for the Copyright key. For details on
possible values, see “NSHumanReadableCopyright” in Information Property List Key Reference .

Specifying Build Settings
There are miscellaneous build settings that you might need to configure for the store as well. You do this in
the Build Settings pane of the project editor.

To edit a build setting

1. In the project editor, select the project or target whose build setting you want to edit.

Configuring Your Xcode Project for Distribution
Specifying Build Settings

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

114

2. Click Build Settings at the top of the project editor.

3. Locate the build setting in the left column, or type the name of the build setting in the search field in
the upper-right corner.

4. Click All if some build settings fail to appear.

5. Set the value for the build setting in the right column.

Setting Architectures for iOS Apps
The Architectures build setting identifies the architectures for which your app is built. An iOS device uses one
of a set of architectures, which include armv7 and armv7s. You have two options for specifying the value of
this setting:

 ● Standard. Produces an app binary with a common architecture, compatible with all supported iOS devices.
This option generates the smallest app, but it may not be optimized to run at the best possible speed for
all devices.

 ● Other. Produces an app binary for a specified set of architectures.

If you choose Other from the Architectures build-setting value list, click the plus button (+) to enter the custom
iOS-device architecture names you support.

Configuring Your Xcode Project for Distribution
Specifying Build Settings

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

115

Important: The store rejects a binary that supports only armv7s. If armv7s is included in the Architectures
list, then armv7 must also be included.

Setting the Base SDK
The Base SDK version number must be greater than or equal to the software version number on your
development device; otherwise, Xcode cannot initiate a debugging session with the device. The Base SDK for
your project and targets should be set to the latest operating system, which is the default value. The Base SDK
property is located in the Architectures area in the Build Settings pane. For iOS apps, set Build SDK to Latest
iOS. For Mac apps, set the Build SDK to Latest OS X. If you choose another value, you need to download and
install the latest SDK version that is greater than or equal to your device software version.

Setting the Debug Information Format for Mac Apps
Set the Debug Information Format build setting to “DWARF with dSYM.”

Recap
In this chapter, you learned how to create your Xcode project from a template and configure it for distribution
to the store.

Configuring Your Xcode Project for Distribution
Recap

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

116

You’ve created your iOS app in Xcode and added store technologies. You’ve tested your app on your own
devices and on iOS Simulator. It’s time for beta testing. In this phase, you distribute the app to a wider
audience—to give the app a “real-world” test and, in some cases, to offer testers a preview of your next version.

You should rigorously test your app on a variety of devices and iOS versions because different kinds of devices
and iOS releases have different capabilities. It’s not sufficient to test your app on a device provisioned for
development or the simulator. iOS Simulator doesn’t run all threads that run on devices, and launching apps
on devices through Xcode disables some of the watchdog timers. At a minimum, test the app on all devices
you support and have available. For example, if you have a game that runs only on iPhone and iPod touch,
you should test on those devices and not on iPad. In addition, keep prior versions of iOS installed on devices
for compatibility testing. If you don’t support certain devices or iOS versions, you need to indicate this in the
project target settings in Xcode.

To distribute your app for beta testing:

1. Optionally, create an iTunes Connect app record.

2. Register all test devices.

3. Create a distribution certificate.

4. Create an ad hoc provisioning profile.

5. Archive and validate your app.

6. Create an iOS App Store Package.

7. Install the app on a test devices.

8. Solicit crash reports from testers.

About Ad Hoc Provisioning Profiles
An ad hoc provisioning profile is a distribution provisioning profile for iOS apps that allows your app to be
installed on designated devices and use store technologies without the assistance of Xcode. It is one of the
two types of distribution provisioning profiles you can create for iOS apps (you use the other type of distribution
provisioning profile later to submit your app to the store). An ad hoc provisioning profile ensures that test
versions of your app are not copied and distributed without your knowledge.

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

117

Beta Testing Your iOS App

When you are ready to distribute your app to testers, you create an ad hoc provisioning profile specifying an
App ID that matches one or more of your apps, a set of test devices, and a single distribution certificate.

Each iOS device in an ad hoc provisioning profile is identified by its unique device ID (UDID). The devices you
register and add to a provisioning profile are stored by Member Center. Each individual or company can register
up to 100 devices for development and testing.

You sign the iOS App Store Package containing your app using the distribution certificate specified in the ad
hoc provisioning profile and distribute it to testers.

Creating Your App Record in iTunes Connect
If you are beta testing a final candidate for a release, be sure to validate the app before distributing it to testers.
The validation tests are performed by iTunes Connect, which checks whether your Xcode project is configured
correctly for the store. For example, it reports a problem if you are missing required app icons. Your iTunes
Connect app record needs to be in the “Waiting for Upload” or later state to validate the archive. To create
your app record and change it to the “Waiting for Upload” state, read “Creating an App Record” (page 153)
before continuing.

Registering Test Devices
To register test devices, collect device IDs from testers and add them to Member Center.

Testers can get their device ID using iTunes. (They do not need to install Xcode to do this.) Send the instructions
in “Locating Device IDs” (page 171) using iTunes to testers and ask them to send their device IDs to you, or
follow these steps to collect your own device IDs.

In Member Center, register one or more devices, as described in “Registering Devices Using Member
Center” (page 170).

Beta Testing Your iOS App
Creating Your App Record in iTunes Connect

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

118

Creating Distribution Certificates
You need a distribution certificate before you can create an ad hoc provisioning profile. If you did not create
a distribution certificate during development, you can create it now by opening the Devices organizer in Xcode
and selecting “Refresh from Developer Portal” from the Editor menu. If you are missing your distribution
certificate, Xcode offers to request an iOS Distribution certificate on your behalf. Click Submit Request when
this dialog appears.

Note: You must be an individual developer or a company team admin or agent to create a distribution
certificate. If you have a company membership, read “Managing Your Team” (page 184) for a
description of team roles and tasks team agents perform on behalf of team members.

Verify Your Steps
Before continuing, verify that the distribution certificate in Member Center matches the certificate in Xcode.
The certificate must be valid to sign your app.

To verify distribution certificates using Member Center

1. In Certificates, Identifiers & Profiles, select Certificates.

2. Under the Certificates section, select Distribution.

The names, types, and expiration dates of the development certificate should match the information
that you view in Xcode and Keychain Access.

Beta Testing Your iOS App
Creating Distribution Certificates

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

119

http://developer.apple.com/account

Creating Ad Hoc Provisioning Profiles
Now you're ready to create an ad hoc provisioning profile, which allows testers to run your app on their device
without needing Xcode. To create an ad hoc provisioning profile, you select an App ID, a single distribution
certificate, and multiple test devices.

To create an ad hoc provisioning profile

1. In Certificates, Identifiers & Profiles, select Provisioning Profiles.

2. Under Provisioning Profiles, select All.

3. Click the plus button (+) in the upper-right corner.

4. Select Ad Hoc as the distribution method, then click Continue.

5. Select your App ID.

Select the App ID you used during development. If you did not configure any store technologies, you
can use Xcode iOS Wildcard App ID as the App ID.

6. Select the distribution certificate you want to use, and click Continue.

Beta Testing Your iOS App
Creating Ad Hoc Provisioning Profiles

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

120

http://developer.apple.com/account

7. Select the devices you want to use for testing, and click Continue.

8. Enter a profile name, and click Generate.

After the profile is generated, you can download and use it.

In Xcode, select "Refresh from Developer Portal” from the Editor menu to download the provisioning profile.

Archive and Validate Your App
You create an archive of your app regardless of the type of distribution method you choose. Xcode archives
allow you to build your app and store it, along with critical debugging information, in a bundle that is managed
by Xcode. For example, if you distribute a build of your app to testers, archiving the debugging information
makes it easier to interpret crash reports that they send you later. After your app is released, you use the same
debugging information to decipher crash reports that you download from iTunes Connect.

Beta Testing Your iOS App
Archive and Validate Your App

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

121

Important: Save the archive for any version of an app you distribute to users. You need the debugging
information stored in the archive to decipher crash reports later.

With archives you can distribute the same build to the store that you distribute for testing. It’s important to
test the exact build that is a candidate for release. Differences between Xcode build settings can cause bugs
that don’t appear during testing, because the binary being tested was built differently. By having Xcode make
an archive of your app, you can be sure you are testing the exact same build of your app that you submit to
the store.

Follow these steps to archive and validate your app:

1. Set the code signing identity to your distribution certificate.

2. Review the Archive scheme settings.

3. Create and validate an archive of your app.

Code Signing Your App
You set the Code Signing Identity build setting to the distribution certificate in the ad hoc provisioning profile.
The app is code signed when you create the archive in the following step.

To set the code signing identity to your distribution certificate

1. In the project editor, select the target.

Important: If you want to sign multiple targets with the same code signing identity, select the
project, not a target.

2. Select the Build Settings tab.

3. Click All.

4. Type Code Signing in the search field in the Build Settings pane of the project editor.

5. From the Code Signing Identity pop-up menu (in the ad hoc provisioning profile section), choose your
distribution certificate.

Beta Testing Your iOS App
Archive and Validate Your App

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

122

The distribution certificate begins with “iPhone Distribution:” followed by your team name. If you are
an individual developer, your team name is the same as your name.

Troubleshooting
If your distribution certificate or ad hoc provisioning profile doesn’t appear in the Code Signing Identity menu
when you code sign your app, read “Your Provisioning Profile Doesn’t Appear in the Code Signing Identity
Menu” (page 208).

Review the Archive Scheme Settings
Before you make an archive, review the Archive scheme settings to ensure that you don’t archive a debug
version of your app.

To review the Archive scheme

1. In the Xcode project editor, choose Product > Scheme > Edit Scheme to open the scheme editor.

Beta Testing Your iOS App
Archive and Validate Your App

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

123

2. Click Archive in the column on the left.

3. Choose Release from the Build Configuration pop-up menu and click OK.

Creating and Validating an Archive
Next, create an archive of your app. Xcode stores this archive in the Archives organizer. Optionally, validate
your archive (run iTunes Connect tests) after creating it.

To create an archive

1. In the Xcode project editor, choose iOS Device or your device name from the scheme toolbar menu.

You cannot create an archive of a simulator build. If an iOS device is connected to your Mac, the device
name appears in the scheme toolbar menu. When you disconnect the iOS device, the menu item
changes to iOS Device.

2. Choose Product > Archive.

Beta Testing Your iOS App
Archive and Validate Your App

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

124

The Archives organizer appears and displays the new archive.

You need to validate the archive before you can submit it to the store so it’s best to validate your beta version
now to discover issues early. The app record in iTunes Connect must be in the “Waiting for Upload” or later
state in order for you to validate your app, as described in “Creating Your App Record in iTunes Connect” (page
118). If you are not ready to create your app record, you can skip this validation step.

To validate an archive

1. In the Archives organizer, select the archive.

2. Click the Validate button.

3. Enter your iTunes Connect credentials and click Next.

If a dialog appears stating that no application record can be found, create an app record in iTunes
Connect before continuing.

4. Select the app you want to distribute and the appropriate signing identity, and click Next.

Beta Testing Your iOS App
Archive and Validate Your App

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

125

Select the code signing identity that appears under the ad hoc provisioning profile you created in a
previous step.

iTunes Connect runs validation tests.

5. Review validation issues found, if any, and click Finish.

Optionally, fix any validation issues, create a new archive, and validate it again. Validation errors will not
prevent you from distributing your app for beta testing.

Troubleshooting
After you enter your iTunes Connect credentials, if a dialog appears stating that no application record can be
found, create an app record in iTunes Connect before validating your app. Read “Creating an App Record” (page
153) for how to create an app record.

If your distribution certificate doesn’t appear in the Code Signing Identity menu when you validate the archive,
read “Your Provisioning Profile Doesn’t Appear in the Code Signing Identity Menu” (page 208).

Beta Testing Your iOS App
Archive and Validate Your App

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

126

Creating an iOS App Store Package
Testers won’t have Xcode to run your app, so you want to create an iOS App Store Package that they use to
install your app on their device. You use Xcode to create an archive and generate an iOS App Store Package
(a file with a .ipa filename extension) from the archive.

To create an iOS App Store Package for testing on devices

1. In the Archives organizer, select the archive.

2. Optionally, click the Validate button.

If you are close to submitting your app to the store, you should validate it now and fix any problems
before distributing it for final testing. For a complete list of issues you should fix before distributing
your app, read App Store Review Guidelines for iOS Apps .

3. Click the Distribute button.

4. Select “Save for Enterprise or Ad-Hoc Deployment” and click Next.

Beta Testing Your iOS App
Creating an iOS App Store Package

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

127

5. Choose your distribution certificate (the one contained in your ad hoc provisioning profile) from the
Code Signing Identity pop-up menu, and click Next.

6. Enter a filename and location for the iOS App Store Package file, and click Save.

The file will have a .ipa extension

Note: To send an iOS App Store Package to another team member, choose your development
certificate contained in a development provisioning profile as the Code Signing Identity when
creating the package. The development provisioning profile you choose—for example, the team
provisioning profile—needs to contain the team member’s device.

Troubleshooting
If your distribution certificate or ad hoc provisioning profile doesn’t appear in the Code Signing Identity menu
when you create the iOS App Store Package, read “Your Provisioning Profile Doesn’t Appear in the Code Signing
Identity Menu” (page 208).

Beta Testing Your iOS App
Creating an iOS App Store Package

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

128

Installing Your App on Test Devices
Before you distribute your app to testers, follow the steps that testers use to install and run the app on their
devices. Use iTunes to install the app on a nondevelopment device. iOS extracts the embedded ad hoc
provisioning profile in your app and installs it on the device for you. Then test your app on the device.

Follow these steps to install the app on a testing device.

To install the app on a device

1. Connect the testing device to a Mac running iTunes.

Don’t use a Mac that you use for development.

2. Double-click the iOS App Store Package file you created earlier (the file with the .ipa extension).

The app appears in the iTunes app list. (You may need to select Apps under Library to see it.)

3. In the Devices section, select the device.

4. Select the Apps tab.

5. Under Apps, choose “Sort by Name” or “Sort by Kind” from the pop-up menu.

6. Click the Install button next to your app.

The button text changes to “Will Install.”

7. Click the Apply button or the Sync button to sync the device.

This uploads the app to the device so that the user can start testing.

Beta Testing Your iOS App
Installing Your App on Test Devices

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

129

Finally, send the iOS App Store Package file to testers along with these installation and the crash report
instructions described next.

Soliciting Crash Reports from Testers
When an app crashes on a device, iOS creates a record of that event. The next time the tester connects the iOS
device to iTunes, iTunes downloads those records (known as crash logs) to the tester’s Mac. Testers should
send these crash logs to you along with any bug reports. Later, after your app is released, you can also retrieve
crash reports of your live app from iTunes Connect.

Tell testers how to retrieve crash reports from their devices and send them to you.

To send crash reports from a Mac

1. Connect the testing device to a Mac running iTunes.

iTunes downloads the crash reports to your Mac.

2. In the Finder, choose Go > Go to Folder.

3. Enter ~/Library/Logs/CrashReporter/MobileDevice.

4. Open the folder identified by your device’s name.

5. Select the crash logs named after the app you’re testing.

6. Choose Finder > Services > Mail > Send File.

7. In the New Message window, enter the developer’s address in the To field and appropriate text in the
Subject field.

8. Choose Message > Send.

9. To avoid sending duplicate reports later, delete the crash reports you sent.

To send crash reports from Windows

1. Enter the crash log directory for your operating system in the Windows search field, replacing
<user_name> with your Windows user name.

 ● For crash log storage on Windows, type:

C:\Users\<user_name>\AppData\Roaming\Apple
computer\Logs\CrashReporter/MobileDevice

 ● For crash log storage on Windows XP, type:

Beta Testing Your iOS App
Soliciting Crash Reports from Testers

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

130

C:\Documents and Settings\<user_name>\Application Data\Apple
computer\Logs\CrashReporter

2. Open the folder named after your device’s name and send the crash logs for the app you’re testing in
an email message using the subject-text format <app_name> crash logs from <your_name>
(for example, MyTestApp crash logs from Anna Haro) to the app’s developer.

To learn how to interpret the reports when you receive them from testers, read “Analyzing Crash Reports” (page
132).

Ad Hoc Provisioning Profiles in Depth
You signed the iOS App Store Package containing your app using the distribution certificate specified in the
ad hoc provisioning profile. Then you installed the provisioning profile and the app on the test device. The
app successfully launches if the app’s bundle ID matches the App ID, the signature matches the distribution
certificate, and the device is in the device list of the ad hoc provisioning profile.

Recap
In this chapter you learned how to distribute your iOS app for beta testing on designated test devices. You
also received instructions to send to testers to install the beta version of your app and send crash reports to
you.

Beta Testing Your iOS App
Ad Hoc Provisioning Profiles in Depth

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

131

After you distribute your app, you should routinely collect and analyze crash reports. When an app crashes, a
crash report is created which is very useful for understanding what caused the crash.

You may receive crash reports from multiple sources throughout the lifetime of your app. For iOS apps, you
can solicit crash reports from beta testers, as described in “Soliciting Crash Reports from Testers” (page 130).
Similarly, you can collect crash reports for Mac apps during testing. You can also download crash reports from
iTunes Connect for an app that is released, as described in “Viewing Crash Reports” (page 155).

You analyze crash reports using Xcode. To add crash reports to the Devices organizer, drag the crash reports
to the Device Logs group in the Library section. You can then view information about the crash such as the
stack trace for each execution thread. Xcode automatically symbolicates crash logs that you import into the
Devices organizer. Xcode replaces memory addresses with human-readable function names and line numbers.

Important: For Xcode to symbolicate crash reports (to add to the crash log information about the API
used), use Spotlight to index the volume containing your archived apps and their corresponding dSYM
files.

For Mac apps, be sure to analyze a crash report using a guest account with a fresh install of the version of OS
X that matches the crash report. Do not analyze a crash report using a developer or admin system account,
because the problems you want to analyze may not occur.

For how to interpret an iOS crash report, read Understanding and Analyzing iOS Application Crash Reports .

Make sure that you are testing the exact same build that crashed. You should save all the archives that you
distribute for testing and submit to the store. Read How to Match a Crash Report to a Build for how to verify if
your archive in Xcode matches a crash report. Later, follow these same steps to determine if you are testing
the same build that you submitted to the store.

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

132

Analyzing Crash Reports

The final step is to code sign and provision your app before you submit it to the store. This is an important
step that ensures the submission comes directly from you and only you grant permission for your app to use
certain store technologies. Code signing your app or installer package prevents an attacker from submitting
a modified version of your app to the store—only someone with the private key for your distribution certificate
can submit your app to the store.

Follow these steps to submit your app:

1. Create a distribution certificate.

2. Create a store distribution provisioning profile.

3. Archive and validate your app.

4. For Mac apps, test the Mac Installer Package.

5. Submit your app using Xcode or Application Loader.

About Store Provisioning Profiles
A store provisioning profile is a distribution provisioning profile that authorizes your app to use certain store
technologies and ensures that your app is submitted by you. A store distribution provisioning profile contains
a single App ID that matches one or more of your apps and a distribution certificate. For iOS apps, you need
a store provisioning profile to submit your app. For Mac apps, unless you use store technologies that require
provisioning, you need only a distribution certificate.

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

133

Submitting Your App

Configure the App ID before you create the store provisioning profile. You enable and configure technologies
for an app by setting entitlements. Some entitlements are enabled for an App ID (a set of apps created by your
team) and others are set in the Xcode project. When you submit your app to the store, you select the distribution
certificate contained in your store provisioning profile.

Before You Begin
Before continuing, review the tasks that should be complete before you submit your first binary:

Task

Review your Xcode project configuration. Read “Configuring Your Xcode Project for
Distribution” (page 98).

To ensure that your app enables the store technologies you want to use, review your App ID
settings. Read “Verify the App ID Settings in Member Center” (page 73).

Beta test your app on a variety of OS versions and devices. For iOS apps, read “Beta Testing Your
iOS App” (page 117).

Create an app record in iTunes Connect, as described in “Creating an App Record” (page 153).
To validate or submit your app, the app record needs to be in the “Waiting for Upload” or later
state.

You should use the same App ID you used for development and testing for submitting your app to the store.
If you don’t use any store technologies that require an explicit App ID, you can use the Xcode wildcard App
ID. If you want to create a new App ID, read “Provisioning Your App for Store Technologies” (page 54). However,
if you change your App ID, you need to retest your app before submitting it to the store.

Mac Note: All apps and their installer packages need to be signed to submit them to the Mac App
Store. If you use a helper app, read Daemons and Services Programming Guide to learn how to
configure it. All Mac apps need to have App Sandbox enabled, too.

To streamline the approval process, review the following guidelines and fix any problems before continuing.

 ● Follow the user interface guidelines in iOSHuman InterfaceGuidelines andOSXHuman InterfaceGuidelines .

 ● Review the store guidelines in App Store Review Guidelines for iOS Apps and App Store Review Guidelines
for Mac Apps .

Submitting Your App
Before You Begin

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

134

Creating Distribution Certificates
You need a distribution certificate to submit your app to the store. If you did not create distribution certificates
in a previous step during development (see “Requesting Signing Certificates” (page 26)), you can create them
now by opening the Devices organizer in Xcode and selecting “Refresh from Developer Portal” from the Editor
menu. If you are missing your distribution certificate, Xcode offers to request one on your behalf. Click Submit
Request when this dialog appears. For iOS apps, you’ll need an iOS Distribution certificate and for Mac apps,
you’ll need a Mac App Distribution and Mac Installer Distribution certificate. (See Table 2-1 (page 36) for all
the types of certificates Xcode requests.)

Note: You must be an individual developer or a company team admin or agent to create a distribution
certificate. If you have a company membership, read “Managing Your Team” (page 184) for a
description of team roles and tasks team agents perform on behalf of team members.

Verify Your Steps
Before continuing, verify that the distribution certificates in Member Center match the certificates in Xcode.
Certificates must be valid in order to sign your app—and for a Mac app, sign your installer package.

To verify distribution certificates using Member Center

1. In Certificates, Identifiers & Profiles, select Certificates.

2. Under Certificates, select Distribution.

Submitting Your App
Creating Distribution Certificates

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

135

http://developer.apple.com/account

The names and expiration date of the distribution certificate should match the information that you
view in Xcode and Keychain Access.

Creating Store Provisioning Profiles
You must provision all iOS apps before submitting them to the store, and you need a distribution provisioning
profile to do so. For Mac apps, if you don’t use any store technologies that require provisioning (you didn’t
need a provisioning profile for development), you can skip this step. To create a distribution provisioning
profile, you select either the App Store or the Mac App Store as the method of distribution. Then select an App

ID and a single distribution certificate. You do not select any devices to create a store provisioning profile.

To create a store provisioning profile

1. In Certificates, Identifiers & Profiles, select Provisioning Profiles.

2. Click the plus button (+) in the upper-right corner.

Submitting Your App
Creating Store Provisioning Profiles

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

136

http://developer.apple.com/account

3. Select “App Store” for iOS apps or “Mac App Store” for Mac apps as the distribution method and click
Continue.

4. Select the App ID you used for development and click Continue.

Submitting Your App
Creating Store Provisioning Profiles

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

137

If your app doesn’t require an explicit App ID, you can select a wildcard App ID.

5. Select your distribution certificate and click Continue.

A store provisioning profile contains a single distribution certificate.

6. Enter a profile name and click Generate.

After the profile is generated, you can download and use it.

Downloading the Distribution Provisioning Profile
Finally, download the provisioning profile in Xcode by choosing “Refresh from Provisioning Portal” from the
Editor menu.

Verify Your Steps
Open the Devices organizer in Xcode and select Provisioning Profiles under Library. Your new distribution
provisioning profile should appear. If not, choose “Refresh from Provisioning Portal” from the Editor menu
again. Also verify that the provisioning profile appears in the Code Signing Identity build setting menu.

Submitting Your App
Creating Store Provisioning Profiles

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

138

Archiving and Validating Your App
Just before you submit your app to the store, you create a signed archive of your app and validate it. It is
recommended that you submit the last archive you distributed for final testing. Test your final build before
submitting it to the store, and if you have not done so, test the archive again for regressions after validating
it.

Follow these steps to archive and validate your app:

1. Set the code signing identity to your distribution certificate.

2. Review the Archive scheme settings.

3. Create and validate an archive of your app.

4. If necessary, test your archive before submitting it.

Important: Archives allow you to build your app and store it, along with critical debugging information,
in a bundle that is managed by Xcode. Save an archive for any version of an app you distribute to users.
You need the debugging information stored in the archive to decipher crash reports later.

Code Signing Your App
For iOS and Mac apps that use provisioning profiles, you sign your app using the distribution certificate in the
distribution provisioning profile. For Mac apps that don’t need a provisioning profile, you can instead sign the
app using the distribution certificate. You set the Code Signing Identity build setting to the distribution
certificate in the store provisioning profile. The app is code signed when you create the archive.

Mac Note: If you import external frameworks, sign the frameworks using the codesign
command-line tool before Xcode signs the app, as described in Mac OS X Code Signing In Depth .

To set the code signing identity to your distribution certificate

1. In the Xcode project editor, select the target.

Important: If you want to sign multiple targets with the same code signing identity, select the
project, not a target.

2. Select the Build Settings tab.

3. Click All.

4. Type Code Signing in the search field in the Build Settings pane of the project editor.

Submitting Your App
Archiving and Validating Your App

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

139

5. From the Code Signing Identity pop-up menu (in the distribution provisioning profile section if you
use a provisioning profile), choose the distribution certificate.

For iOS apps, the distribution certificate begins with “iPhone Distribution:” followed by your team
name. For Mac apps, the distribution certificate begins with “3rd Party Mac Developer Application:”
followed by your team name. If you are an individual developer, your team name is the same as your
name.

Troubleshooting
If your distribution certificate or store provisioning profile doesn’t appear in the Code Signing Identity menu
when you code sign your app, refresh the provisioning profiles, as described in “The Code Signing Identity
Build Setting Doesn’t Match Any Certificates” (page 211).

Review the Archive Scheme Settings
Before you make an archive, review the Archive scheme settings to ensure that you don’t archive a debug
version of your app.

To review the Archive scheme

1. In the Xcode project editor, choose Product > Scheme > Edit Scheme to open the scheme editor.

Submitting Your App
Archiving and Validating Your App

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

140

2. Click Archive in the column on the left.

3. Choose Release from the Build Configuration pop-up menu, and click OK.

Creating and Validating an Archive
No matter what method you choose to distribute your app, you want to create an archive first. Before creating
the archive, build and run your app one more time to ensure that it is the version you want to distribute.
Immediately after creating the archive, validate it and fix any validation errors before continuing.

To create an archive

1. In the Xcode project editor, select the project.

2. From the Scheme toolbar menu, choose a scheme.

iOS Note: Choose iOS Device or the device name from the scheme toolbar menu. You cannot
create an archive of a simulator build. If an iOS device is connected to your Mac, the device
name appears in the scheme toolbar menu. When you disconnect the iOS device, the menu
item changes to iOS Device.

3. Choose Product > Archive.

Submitting Your App
Archiving and Validating Your App

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

141

The Archives organizer appears and displays the new archive.

Important: You cannot validate your app unless the app record in iTunes Connect is in the “Waiting for
Upload” or later state, as described in “Creating an App Record” (page 153).

To validate an archive

1. In the Archives organizer, select the archive.

2. Click the Validate button.

3. For Mac apps, select Mac App Store as the validation method and click Next.

4. Enter your iTunes Connect credentials and click Next.

If a dialog appears stating that no application record can be found, you need to create an app record
in iTunes Connect before continuing.

5. Select the app you want to distribute and the appropriate signing identity, and click Next.

If you used a provisioning profile for development, select the code signing identity that appears under
the store provisioning profile you created in a previous step.

Submitting Your App
Archiving and Validating Your App

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

142

iTunes Connect runs validation tests.

6. Review validation issues found, if any, and click Finish.

Fix any validation issues you find, create a new archive, and repeat these steps until there are no further issues.
You cannot proceed until the archive passes all the validation tests.

Troubleshooting
After you enter your iTunes Connect credentials, if a dialog appears stating that no application record can be
found, create an app record in iTunes Connect before validating your app. To learn how to create an app record,
read “Creating an App Record” (page 153).

If your distribution certificate doesn’t appear in the Code Signing Identity menu when you validate the archive,
refresh the provisioning profiles, as described in “The Code Signing Identity Build Setting Doesn’t Match Any
Certificates” (page 211).

Test the Mac Installer Package
Before you submit to the Mac App Store, test the installation process to verify that your app installs correctly.
Do this by saving the installer package to your disk and running a test using the installer command before
submitting it.

You save an installer package to your disk by following the same steps for distributing your Mac app. When
doing so, select Export as the distribution method, Mac Installer Package as the file format, and the Mac Installer
Distribution certificate as the signing certificate. The name of the Mac Installer Distribution certificate is your
team name, and it appears under “Identities without profiles” in the Code Signing Identity menu.

Do not test the installation process by opening the package with the Installer app. Only the installer
command verifies that your app will be installed correctly when it is purchased from the Mac App Store.

To test your installer package, execute the following command in a Terminal window:

sudo installer -store -pkg path-to-package -target /

If the installer finds a bundle with the same bundle ID as the one it is installing, it upgrades the existing app.
Users can then install upgrades even if they have moved your app. If you have a copy of your app installed
(for example, in your build products directory), you may want to remove it so that the installer installs your
app in /Applications. Other options include archiving the existing version in a ZIP file or moving it to another
volume and unmounting that volume.

Submitting Your App
Test the Mac Installer Package

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

143

Submitting Your App Using Xcode
Submitting your app to the App Store or Mac App Store is just one of several types of distribution methods
you can choose. To submit your app using Xcode, select an archive and click the Distribute button in the
Archives organizer. In the first dialog that appears, you select the store distribution method. The following
dialogs and choices are slightly different for iOS and Mac apps.

If you prefer to upload your binary using Application Loader, read Using Application Loader for how to use
Application Loader for this step.

Important: You cannot submit your app unless the app record in iTunes Connect is in the “Waiting for
Upload” state or later, as described in “Creating an App Record” (page 153).

Submitting Your iOS App
For iOS apps, select the “Submit to the iOS App Store” option when distributing your app.

To submit an archive to the App Store

1. In the Archives organizer, select the archive.

2. Click the Distribute button.

Submitting Your App
Submitting Your App Using Xcode

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

144

3. Select “Submit to the iOS App Store” and click Next.

4. Enter your iTunes Connect credentials and click Next.

5. Select the app you want to submit from the Application pop-up menu.

Submitting Your App
Submitting Your App Using Xcode

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

145

6. Select the distribution certificate in the store provisioning profile from the Code Signing Identity pop-up
menu, and click Next.

iTunes Connect runs validation tests.

7. If issues are found, click Cancel and fix them before continuing.

8. If no issues are found, click Finish to submit your app.

Xcode transmits the archive to Apple, where the binary is examined to determine whether it conforms to
the app guidelines. If the binary is rejected, correct the problems that were brought up during app approval
and resubmit it.

If you successfully submit your app, view the status of your app in iTunes Connect, as described in “Viewing
the Status of Your App” (page 153). After submitting your binary, Apple may discover other problems with your
app’s metadata in iTunes Connect that needs to be fixed before Apple can review your app. If no problems
are found, the status of the app should change to “Waiting For Review.” To resolve any problems with your
app record, refer to iTunes Connect Developer Guide .

Submitting Your App
Submitting Your App Using Xcode

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

146

Submitting Your Mac App
For Mac apps, select the “Submit to the Mac App Store” option, and then later select an installer distribution
certificate.

To submit an archive to the Mac App Store

1. In the Archives organizer, select the archive.

2. Click the Distribute button.

3. Select “Submit to the Mac App Store” and click Next.

4. Enter your iTunes Connect credentials and click Next.

5. Select the app you want to submit from the Application pop-up menu.

6. Select the appropriate distribution certificate from the Code Signing Identity pop-up menu, and click
Next.

Submitting Your App
Submitting Your App Using Xcode

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

147

Select the distribution certificate that contains your team name. If you are an individual developer,
your team name is the same as your name. If you use a store provisioning profile, select the distribution
certificate in your store provisioning profile.

iTunes Connect runs validation tests.

7. If issues are found, click Cancel and fix them before continuing.

8. If no issues are found, click Finish to submit your app.

Xcode transmits the archive to Apple, where it is examined to determine whether it conforms to the app
guidelines. If the app is rejected, correct the problems that were brought up during app approval and
resubmit it.

If you successfully submit your app, view the status of your app in iTunes Connect, as described in “Viewing
the Status of Your App” (page 153). After submitting your binary, Apple may discover other problems with your
app’s metadata in iTunes Connect that needs to be fixed before Apple can review your app. If no problems
are found, the status of the app should change to “Waiting For Review.” To resolve any problems with your
app record, refer to iTunes Connect Developer Guide .

Submitting Your App
Submitting Your App Using Xcode

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

148

Troubleshooting
If your app doesn’t appear after you enter your iTunes Connect credentials, read “Before You Begin” (page 134)
to complete the necessary iTunes Connect configuration steps.

If your distribution certificate doesn’t appear in the Code Signing Identity menu when you submit your app,
refresh the provisioning profiles, as described in “The Code Signing Identity Build Setting Doesn’t Match Any
Certificates” (page 211).

Recap
In this chapter you learned how to submit your app to the store using Xcode. This chapter doesn’t cover the
approval process. To learn how to view the status of your app, read iTunes Connect Developer Guide .

Submitting Your App
Recap

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

149

After your app is approved, you can set the date when it is available to customers. After doing so, be prepared
to maintain your app on the store. You need to respond to crash reports and customer reviews. You also need
to fix problems promptly. You’ll use iTunes Connect to manage and update versions of your app. This chapter
provides an overview of a few common tasks you’ll perform.

You’ll use iTunes Connect to manage and update versions of your app.

Check the status of your app. Use iTunes Connect to check the status of your app after you submit your app
and are waiting for approval, as described in “Viewing the Status of Your App” (page 153).

View customer reviews. Customer ratings and reviews on the store can have a big effect on the success of
your app; if users run into problems, determine the bug and submit a new version of the app through the
approval process. To view customer reviews, read “Viewing Customer Reviews” (page 156).

View crash reports. Use iTunes Connect to download crash reports submitted to Apple by users. Crash reports
represent significant problems that users are finding in the app. To access and analyze these crash reports,
read “Viewing Crash Reports” (page 155) and “Analyzing Crash Reports” (page 132).

Update your app. You follow the same distribution process to submit updates to your app. In iTunes Connect,
you use the same app record but create a new version of your app. To update your app, read “Creating New
Versions of Your App” (page 157).

iTunes Connect provides data to help you determine how successful the app is, including sales and financial
reports, customer reviews, and crash logs submitted to Apple by users. Crash logs are particularly important,
because they represent significant problems that users are seeing in the app. Make investigating these reports
a high priority.

Recap
This chapter summarized a few common tasks you perform to ship and manage your app after you submit it
to the store. Before you release your app, you also need to enter sales and marketing information in iTunes
Connect. To learn all the tasks you perform to manage your app on the store, read iTunes Connect Developer
Guide .

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

150

Releasing and Updating Your App

iTunes Connect is a marketing and business web tool that iOS and Mac developers use to sign contracts, set
up tax and banking information, submit versions of their app, and obtain sales and finance reports. During
development, you enter metadata about your app, technologies that it uses, and any versions in to iTunes
Connect.

Initially, only the team agent, who joined the developer program, has access to iTunes Connect. Otherwise,
your developer program team and iTunes Connect users are completely separate. Because iTunes Connect is
primarily used to manage the business aspects of your app and people performing those types of tasks are
typically not developers, the team agent tightly controls access to iTunes Connect. Individual developers are
the team agent for their one man team but can add non-developer iTunes Connect users too. Similar to team
members, iTunes Connect users have roles and privileges.

iTunes Connect users with the admin and technical roles perform a number of tasks, explained in this chapter,
in support of the development team and before the team can submit their app to the store:

1. Add iTunes Connect users to give other team members access to iTunes Connect.

2. Create your app record so you can configure store technologies and submit your app.

3. View the status of your app when you are ready to submit it or waiting for approval.

4. Change the availability date of an app to release it.

5. View crash reports and customer reviews after your app is available.

6. Create a new version of your app.

About iTunes Connect User Roles and Privileges
The team agent manages access privileges to iTunes Connect. For example, changing the price of an app is a
task you likely want to limit to a small number of people in your organization. Access to the iTunes Connect
tool is configured separately and is designed to be more fine-grained than the access you set for team members.
In iTunes Connect, each user can be assigned one or more roles; each role has different privileges. Table 11-1
describes the roles at a high level.

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

151

Managing Your App in iTunes Connect

Table 11-1 iTunes Connect roles and responsibilities

ResponsibilitiesRole

The legal role is automatically assigned to the team agent, and only the team agent is
permitted to have this access. The legal role allows the team agent to sign legal contracts
and other agreements.

Legal

The admin role grants access to all tasks in iTunes Connect except for those assigned to
the legal role. A team agent is always assigned the admin role, and this access cannot be
revoked without changing which person on the team acts as the team agent. An admin
can assign iTunes Connect roles to other people on the team.

Admin

The technical role grants the ability to edit the app information stored in iTunes Connect
and to view test accounts for store technologies.

Technical

The finance role grants access to financial reports and sales information. The finance role
also authorizes the person to view contract, tax, and banking information.

Finance

The sales role grants access only to sales data.Sales

Table 11-2 lists the most common modules (areas of iTunes Connect) you need to access, along with the roles
that have access to each module. The legal role is not shown, because only the team agent has those rights.
All participants can edit their own personal details stored in their accounts in iTunes Connect.

Table 11-2 Abbreviated list of iTunes Connect modules, including availability by role

SalesFinanceTechnicalAdminLegalResponsibility

Manage Users

Manage Test Users

Manage Your Applications

Sales and Trends

Tax and Banking

Contracts

Payments and Financial Reports

Catalog Reports

Managing Your App in iTunes Connect
About iTunes Connect User Roles and Privileges

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

152

Adding iTunes Connect Users
To add a an iTunes Connect user, read “Setting Up an iTunes Connect User” in iTunes Connect Developer Guide .

Creating an App Record
Certain store technologies require you to create an app record and enter the bundle ID using iTunes Connect
during development. Later, you also need to create an app record in iTunes Connect to submit your app to
the store. When you are ready to create your app record, read “Adding New Apps” in iTunes Connect Developer
Guide .

Viewing the Status of Your App
To submit your app to the store, the status of the app record needs to be “Waiting for Upload” or later. You
can view the status of your app in iTunes Connect.

To view the status of your app

1. Sign in to iTunes Connect.

2. On the iTunes Connect homepage, click Manage Your Applications.

3. Locate the app you want to edit, and click the large icon or app name.

Managing Your App in iTunes Connect
Adding iTunes Connect Users

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

153

https://itunesconnect.apple.com

The status of each version of your app appears below in the Versions section below the version number.

Refer to “Checking the Status of an App” in iTunes Connect Developer Guide for details on each status. Follow the
steps in “Ready to Upload Your Binary” in “Adding New Apps” to change your app record from the “Prepare for
Upload” to “Waiting for Upload” state.

Changing the Availability Date of Your App
Use iTunes Connect to set a date when the app is available on the store. For example, you can choose a date
that immediately releases the app to the store after it is approved, or you can set a later date. Using a later
availability date allows you to arrange other marketing activities around the launch of your app.

To set the availability date

1. Sign in to iTunes Connect.

2. Select Manage Your Applications.

3. Select your app in the Recent Activity section.

4. Click Rights and Pricing.

Managing Your App in iTunes Connect
Changing the Availability Date of Your App

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

154

https://itunesconnect.apple.com

5. Choose a date from the Availability Date pop-up menus.

6. Optionally, edit the other fields on this form.

7. Click Save.

Changes you make to Rights and Pricing go live immediately (expect 24 hours for a full refresh of the
changes on the store).

Viewing Crash Reports
All crash logs contain stack traces for each thread at the time of termination. To view a crash log, open it from
the Xcode Organizer window. As long as your Mac computer has the archive corresponding to the version of
the app that generated the crash log, Xcode automatically resolves any addresses in the crash log with the
actual classes and functions in the app.

You view and save crash reports in iTunes Connect from the version details page.

Managing Your App in iTunes Connect
Viewing Crash Reports

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

155

To view crash reports

1. Sign in to iTunes Connect.

2. On the iTunes Connect homepage, click Manage Your Applications.

3. Locate the app you want to edit, and click the large icon or app name.

4. Click View Details for the version of your app.

5. Select Crash Reports in the upper-right corner.

6. Click Refresh Now to retrieve any new available crash reports.

7. Select the crash report you want to view, and save the crash report you want to retain.

To view the crash reports in Xcode, follow the steps in “Analyzing Crash Reports” (page 132).

Viewing Customer Reviews
You view customer reviews in iTunes Connect in the same way that you view crash reports, described in
“Viewing Crash Reports” (page 155), except that you select Customer Reviews in the upper-right corner.

To view crash reports

1. Sign in to iTunes Connect.

2. On the iTunes Connect homepage, click Manage Your Applications.

3. Locate the app you want to edit, and click the large icon or app name.

4. Click View Details for the version of your app.

5. Select Customer Reviews under Links.

Managing Your App in iTunes Connect
Viewing Customer Reviews

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

156

https://itunesconnect.apple.com
https://itunesconnect.apple.com

If you do not see this link, customer reviews are not available for this version of your app.

Creating New Versions of Your App
To create new versions of your app, read “Updating Your App to a New Version” in iTunes Connect Developer Guide .

Recap
In this chapter you learned how to grant access to iTunes Connect and perform common development tasks.
For complete documentation on using iTunes Connect, refer to iTunes Connect Developer Guide .

Managing Your App in iTunes Connect
Creating New Versions of Your App

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

157

During the lifetime of your developer program membership, you occasionally need to refresh your team
certificates and provisioning profiles, especially when projects and team members change. You may also need
to re-create expired certificates and repair invalid provisioning profiles. This chapter covers miscellaneous tasks
you perform to maintain your certificates and provisioning profiles.

About Protecting Your Code Signing Identities
A code signing identity—which consists of a public-private key pair that is issued by Apple—represents your
credentials. The private key is stored locally on your Mac so you should protect it as you would an account
password. If you move to another development Mac, you need to copy your code signing identity to the other
Mac.

For a company, other team members have their own code signing identities installed on their Macs. Member
Center contains a repository for all of the combined team assets but doesn’t store any of the private keys. The
private keys for other team members are stored locally on their respective Macs.

You should keep a secure backup of your private key. If the key is lost, you won’t be able to sign code without
creating an entirely new identity. Worse, if someone else has your private key, they may be able to impersonate
you. In the wrong hands, someone might attempt to distribute an app that contains malicious code. Not only
could that cause the app to be rejected, it could also mean your developer credentials could be revoked by
Apple. Private keys are stored only in the keychain and cannot be retrieved if lost.

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

158

Best Practices for Maintaining Certificates and
Provisioning Profiles

If you want to code sign your app using another Mac, you must export your developer profile on the Mac you
used to create your certificates and import it on the other Mac.

Exporting and Importing Certificates and Provisioning Profiles
After you create signing certificates and install them in your keychain—or later when you create provisioning
profiles—you should export them to create a backup of your assets. You do this to move them to another Mac
that you use for development, or repair a certificate if the private key is missing. Because the private key is
stored in your login keychain, you can’t refresh your provisioning profiles and certificates to replace a missing
private key. Instead, import your certificates and provisioning profiles from a backup.

The developer profile contains the following team assets:

 ● Development certificates

 ● Distribution certificates

 ● Provisioning profiles

Because the developer profile represents your credentials to sign and submit apps to the store, Xcode encrypts
and password protects the exported file.

Exporting Your Developer Profile
You should always maintain a backup copy of your developer profile. Do this when you first create certificates
in Xcode and any time you make changes to your provisioning profile.

To export your developer profile

1. In the Devices organizer, select your team in the Teams section.

2. Click Export at the bottom of the window.

3. Enter a filename in the Save As field.

4. Enter a password in the Password and Verify fields.

Best Practices for Maintaining Certificates and Provisioning Profiles
Exporting and Importing Certificates and Provisioning Profiles

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

159

The file is encrypted and password protected.

5. Click Save.

The file is saved to the location you specified with a .developerprofile extension.

Importing Your Developer Profile
You import your developer profile to restore missing private keys or when you need to switch to another Mac.

To import your developer profile

1. In the Devices organizer, select your team in the Teams section.

2. Click Import at the bottom of the window.

3. Locate and select the file containing your developer profile.

Best Practices for Maintaining Certificates and Provisioning Profiles
Exporting and Importing Certificates and Provisioning Profiles

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

160

The file should have a .developerprofile extension.

4. Enter the password you used to encrypt the file.

5. Click Open.

If you use provisioning profiles, refresh the provisioning profiles after importing the signing certificates by
opening the Devices organizer and selecting “Refresh from Developer Portal” from the Editor menu. If you
imported your developer profile to repair a missing private key, verify that your certificates and provisioning
profiles are now valid.

Removing Certificates from Your Keychain
You remove certificates from your keychain if they are invalid, no longer used (perhaps they belong to a
previous team you were a member of), or are missing the private key and consequently, are not usable. If you
remove certificates from your keychain that are contained in provisioning profiles, those provisioning profiles
also become invalid and need to be removed from Xcode and your devices.

Best Practices for Maintaining Certificates and Provisioning Profiles
Removing Certificates from Your Keychain

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

161

If you want to remove certificates because of missing private keys, you should not perform this operation
without following all of the steps in “Re-Creating Certificates and Updating Related Provisioning Profiles” (page
181) to re-create your certificates.

If you have a backup of your developer profile (containing your code signing identities), don’t revoke your
certificates after removing them from your keychain. Instead, import your certificates, as described in “Importing
Your Developer Profile” (page 160).

Warning: You cannot re-create a private key once you remove it from your keychain unless you import

it from a developer profile file. If you are intentionally re-creating your certificates, you must revoke

all of your certificates immediately after removing them from your keychain. If you don’t, Xcode

downloads and installs them in your keychain the next time you refresh your provisioning profiles.

Without the private keys, you cannot sign apps using the certificates.

To remove signing certificates from your keychain

1. Launch Keychain Access (located in /Applications/Utilities).

2. In the Category section, select Keys.

3. Click the disclosure triangles for all the private keys to reveal the associated certificates.

4. Select all of the private keys associated with the certificates that you want to remove.

Refer to Table 2-1 (page 36) for how to recognize the type of certificate by the name as it appears in
Keychain Access.

5. Select the corresponding public key for each private key.

6. Press Delete (on the keyboard), and when a dialog appears, click Delete.

Best Practices for Maintaining Certificates and Provisioning Profiles
Removing Certificates from Your Keychain

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

162

7. In the Category section, select Certificates.

8. Select all of the certificates that you want to remove.

The certificates won’t have private keys.

9. Press Delete (on the keyboard), and when a dialog appears, click Delete.

To remove invalid provisioning profiles from Xcode

1. In Xcode, select Provisioning Profiles in the Library section of the Devices organizer.

2. Select the invalid provisioning profiles that appear in the list.

The status of an invalid provisioning profile is “Valid signing identity not found.”

3. Press Delete (on the keyboard), and when a dialog appears, click Delete.

To remove invalid provisioning profiles from a device

1. Connect the device to your Mac.

2. In Xcode, click the disclosure triangle next to your device in the Devices organizer.

3. Select Provisioning Profiles under your device.

Best Practices for Maintaining Certificates and Provisioning Profiles
Removing Certificates from Your Keychain

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

163

4. Select the invalid provisioning profiles.

5. Press Delete (on the keyboard), and when a dialog appears, click Delete.

Revoking Certificates
You revoke certificates when you no longer need them or when you want to re-create them because of another
code signing issue (refer to “Certificate Issues” (page 208) for the types of problems that can occur). You also
revoke certificates if you suspect that they have been compromised. If you are a team admin for a company,
you may want to revoke development certificates of team members who no longer work on your project.

Table 12-1 lists the types of certificates each team member can revoke. Individual developers are the team
agent for their one-person team, which means they have permission to revoke all types of development and
distribution certificates except as indicated in Table 12-1. For a company, any team member can revoke their
own development certificate, but they can only revoke distribution certificates if they are a team agent or
admin.

Table 12-1 Team certificate revoking privileges

Team MemberTeam AdminTeam AgentType of Certificate

Your development certificates:
iOS Development

Mac Development

Other team admin and member certificates:
iOS Development

Mac Development

The team agent’s certificate:
iOS Development

Mac Development

Store distribution certificates:
iOS Distribution

Mac App Distribution

Mac Installer Distribution

Best Practices for Maintaining Certificates and Provisioning Profiles
Revoking Certificates

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

164

Team MemberTeam AdminTeam AgentType of Certificate

Developer ID certificates:
Developer ID Application

Developer ID Installer

Push notification certificates:
APNs Development iOS

APNs Production iOS

APNs Development Mac

APNs Production Mac

Pass certificate:
Pass Type ID

You cannot revoke Developer ID or Passbook certificates using Member Center. Instead, send a request to
Apple at product-security@apple.com to revoke these types of certificates.

If Apple revokes your Developer ID certificate, users will no longer be able to install applications that have
been signed with that certificate. Instead of revoking a Developer ID certificate, you can create additional
Developer ID certificates using Member Center as described in “Requesting Additional Developer ID
Certificates” (page 168).

If you want to revoke certificates because of missing private keys, do not perform this operation without
performing all of the steps in “Re-Creating Certificates and Updating Related Provisioning Profiles” (page 181).

To revoke a certificate

1. In Certificates, Identifiers & Profiles, select Certificates.

2. Under Certificates, select All.

Best Practices for Maintaining Certificates and Provisioning Profiles
Revoking Certificates

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

165

http://developer.apple.com/account

3. Select the certificate you want to revoke and then click Revoke.

4. Click Revoke when a dialog appears.

Replacing Expired Certificates
When your development or distribution certificate expires, remove it and request a new certificate in Xcode.
Follow the same steps to re-create certificates, as described in “Re-Creating Certificates and Updating Related
Provisioning Profiles” (page 181).

Best Practices for Maintaining Certificates and Provisioning Profiles
Replacing Expired Certificates

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

166

Installing Missing Intermediate Certificate Authorities
To use your certificates, you need to have the correct intermediate certificate in your keychain. An intermediate
certificate ensures that your certificates were issued by a trusted source. The intermediate certificate, named
Apple Worldwide Developer Relations Certification Authority, is installed in your system keychain when you
install Xcode. The intermediate certificate for Developer ID certificates is called Developer ID Certification
Authority. If you accidentally remove an intermediate certificate, you can install it again.

To install a missing intermediate certificate

1. Go to http://www.apple.com/certificateauthority.

2. Click “Download certificate” under Apple Intermediate Certificates for the intermediate certificate you
are missing.

A certificate file, with a .cer extension, appears in your Downloads folder.

3. Double-click the certificate file to install it in your system keychain.

Best Practices for Maintaining Certificates and Provisioning Profiles
Installing Missing Intermediate Certificate Authorities

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

167

http://www.apple.com/certificateauthority

Requesting Additional Developer ID Certificates
Developer ID certificates are used to distribute your application outside of the Mac App Store. Create your
Developer ID certificates, along with other types of certificates, using Xcode as described in “Requesting Signing
Certificates” (page 26). If you want more Developer ID certificates, you can create up to five of each type using
Member Center.

To create a Developer ID certificate

1. In Certificates, Identifiers & Profiles, select Certificates.

2. Under Certificates, select All.

3. Click the plus button (+) in the upper-right corner.

4. Select Developer ID under Distribution and click Continue.

5. Select the certificate type—Developer ID Application or Developer ID Installer—and click Continue.

6. Follow the instructions to create a certificate signing request (CSR) using Keychain Access and click
Continue.

Best Practices for Maintaining Certificates and Provisioning Profiles
Requesting Additional Developer ID Certificates

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

168

http://developer.apple.com/account

7. Click Choose File.

8. Select a CSR file (with a .certSigningRequest extension) and click Choose.

9. Click Generate.

10. Click Download.

The certificate file appears in your Downloads folder.

To install the Developer ID certificate in your keychain, double-click the downloaded certificate file (with a
.cer extension). The Developer ID certificate should appear in the My Certificates category in Keychain Access.

Registering App IDs
You register App IDs in the process of adding store technologies to your app. This is the first step to creating
specialized development and distribution provisioning profiles, as described in “Provisioning Your App for
Store Technologies” (page 54). Read “Creating App IDs” (page 57) if you only need to create an App ID.

Deleting App IDs
You can also remove App IDs when you no longer need them.

Best Practices for Maintaining Certificates and Provisioning Profiles
Registering App IDs

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

169

To remove an App ID

1. In Certificates, Identifiers & Profiles, select Identifiers.

2. Under Identifiers, select App IDs.

3. Select the App ID you want to delete and then click Settings.

4. Scroll to the bottom of the page and click Delete.

5. Read the dialog that appears and click Delete.

Provisioning profiles that contain a deleted App ID become invalid. You can change the App ID in the
provisioning profiles, as described in “Editing Provisioning Profiles” (page 175), or delete them.

Registering Devices Using Member Center
In Member Center, you can register individual devices as needed or multiple devices by uploading a file that
contains information about each device. Each year, you are allowed to register a fixed number of devices. The
maximum number of devices you can register is 100. If you later delete a device, it won’t decrease the current
count of registered devices.

Best Practices for Maintaining Certificates and Provisioning Profiles
Registering Devices Using Member Center

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

170

http://developer.apple.com/account

Locating Device IDs
You need the name and device ID for each device you want to register. There are multiple methods to obtain
device IDs depending on whether you have Xcode installed.

In Xcode, a team member can select a device in the Devices organizer to display the device ID.

To locate your device ID using Xcode

1. Choose Window > Organizer.

2. Select your Mac in the Devices section.

3. Select and copy the text in the Identifier field.

For iOS apps, you can also obtain a device ID using iTunes. For example, testers follow these steps to get their
device ID using iTunes when they don’t have Xcode installed.

To get a device ID using iTunes

1. Launch iTunes on your Mac.

2. Connect your device to your Mac.

Best Practices for Maintaining Certificates and Provisioning Profiles
Registering Devices Using Member Center

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

171

3. In the upper-right corner, select the device.

4. In the Summary pane, click the Serial Number label under Phone Number.

The label Serial Number changes to Identifier and displays the device ID.

5. To copy the device ID, select Edit > Copy Identifier (UDID).

If the Edit menu contains a Copy Serial Number menu item, click the Serial Number label under Phone
Number to change the menu item to Copy Identifier (UDID).

6. Paste the device ID in a document or email message.

For Mac apps, you can get a device ID using the System Information app. For example, use this method if you
want to register a Mac for testing that is not used for development.

To locate your Mac device ID using System Information

1. Open the System Information app located in the /Applications/Utilities folder.

2. Select Hardware in the left column.

The device ID, or hardware UUID, appears near the bottom of the Hardware Overview pane and is of the
form XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX.

Registering Individual Devices
To register a device using Member Center, you need to have the device name and device ID.

Best Practices for Maintaining Certificates and Provisioning Profiles
Registering Devices Using Member Center

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

172

To register a single device

1. In Certificates, Identifiers & Profiles, select Devices.

2. Under Devices, select All.

3. Click the plus button (+) in the upper-right corner.

4. Select Register Device.

5. Enter a device name and the device ID.

6. Scroll to the bottom of the page, and click Continue.

7. Review the registration information, then click Submit.

Registering Multiple Devices
If you have many test devices, you can create a file containing the device names and device IDs, and upload
the entire file to Member Center. Member Center supports these two file formats: a property list file with a
.deviceids file extension, and a plain text file. The file format you choose depends on whether you have
access to the devices you want to register.

Best Practices for Maintaining Certificates and Provisioning Profiles
Registering Devices Using Member Center

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

173

http://developer.apple.com/account

Creating a Property List Devices File
If you have access to the testing devices, you can use the iPhone Configuration Utility to create a property list
file that contains the device names and device IDs of the devices you connect to your Mac.

To download iPhone Configuration Utility

1. Go to http://www.apple.com/support/iphone/enterprise/.

2. Scroll down to the iPhone Configuration Utility section.

3. Click the appropriate download link and follow the online instructions.

To create the devices file using iPhone Configuration Utility

1. Launch iPhone Configuration Utility.

2. Connect each device to your Mac in turn.

iPhone Configuration Utility adds the device information to the Devices section under Library.

3. Select Devices under Library and then select the devices you want to add to the file.

4. Click Export in the toolbar.

5. Enter a filename in the Save As text field.

6. Choose Device UDIDs from the “Export type” pop-up menu.

7. Click Save.

Creating a Plain Text Devices File
If you don’t have access to the testing devices, you can create a .txt file containing the device names and
device IDs you collect using another method. In this case, create a tab-delimited file with one device ID and
one device name in each row. You can use the first row for your headers, because that row is ignored when
parsed.

Uploading the Devices File
In Member Center, the steps to upload the devices file are the same for both formats.

To register multiple devices

1. In Certificates, Identifiers & Profiles, select Devices.

2. Under Devices, select All.

3. Click the plus button (+) in the upper-right corner.

Best Practices for Maintaining Certificates and Provisioning Profiles
Registering Devices Using Member Center

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

174

http://www.apple.com/support/iphone/enterprise/
http://developer.apple.com/membercenter
http://developer.apple.com/account

4. Select Register Multiple Devices.

5. Click Choose File.

6. Select the file you want to upload and click Choose.

Select either the .deviceids or .txt file you created earlier.

7. Click Continue.

8. Review the registration information, then click Submit.

Editing Provisioning Profiles
You don’t need to re-create provisioning profiles to edit them. You can change the name of a provisioning
profile and other properties depending on the type of provisioning profile. For all types of provisioning profiles,
you can change the App ID. For an iOS app, you can add devices to an ad hoc provisioning profile. If you change
a provisioning profile, remember to replace instances of the provisioning profile that you installed on devices.

Best Practices for Maintaining Certificates and Provisioning Profiles
Editing Provisioning Profiles

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

175

If you want to repair a provisioning profile because you re-created a certificate, be sure to follow all the steps
in “Re-Creating Certificates and Updating Related Provisioning Profiles” (page 181).

Note: You cannot modify the team provisioning profile created by Xcode.

To edit a provisioning profile

1. In Certificates, Identifiers & Profiles, select Provisioning Profiles.

2. Under Provisioning Profiles, select All.

3. Select the provisioning profile you want to modify, and then click Edit.

Best Practices for Maintaining Certificates and Provisioning Profiles
Editing Provisioning Profiles

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

176

http://developer.apple.com/account

4. Make your changes to the provisioning profile, such as changing its name, adding certificates, or
selecting a different set of devices.

5. Click Generate.

After the profile is generated, you can download the profile or refresh provisioning profiles in Xcode.

Installing and Removing Provisioning Profiles from Devices
If you want to launch an app on a device that requires a development provisioning profile, install the provisioning
profile on the device. You can later remove a provisioning profile that you no longer need or that is invalid.
You can install and remove provisioning profiles from devices using Xcode.

Best Practices for Maintaining Certificates and Provisioning Profiles
Installing and Removing Provisioning Profiles from Devices

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

177

iOS Note: iOS automatically installs an embedded ad hoc provisioning profile on a device.

To install a provisioning profile on a device using Xcode

1. For iOS apps, connect the device to your Mac.

2. Select Provisioning Profiles in the Library section of the Devices organizer.

3. Drag the provisioning profile from the Library section to your device in the Devices section.

To remove a provisioning profile from a device using Xcode

1. For iOS apps, connect the device to your Mac.

2. Select the disclosure triangle next to your device under Devices to reveal the contents.

3. Select Provisioning Profiles in the left column under your device.

Best Practices for Maintaining Certificates and Provisioning Profiles
Installing and Removing Provisioning Profiles from Devices

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

178

4. Select the provisioning profile you want to delete on the right.

5. Click Delete.

Removing Provisioning Profiles from Your Team
Occasionally, you may need to remove a provisioning profile from your team. After doing so, you should also
remove the provisioning profile from your devices, as described in “Installing and Removing Provisioning
Profiles from Devices” (page 177).

To remove a provisioning profile from your team

1. In Certificates, Identifiers & Profiles, select Provisioning Profiles.

2. Under Provisioning Profiles, select All.

3. Select the provisioning profile you want to remove.

4. Click Delete.

5. Read the dialog that appears and click Delete.

Best Practices for Maintaining Certificates and Provisioning Profiles
Removing Provisioning Profiles from Your Team

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

179

http://developer.apple.com/account

Renewing Expired Provisioning Profiles
If a provisioning profile expires, the provisioning profile appears as such in both Xcode and Member Center.
Using Xcode, a team agent or admin can renew an expiring or expired provisioning profile.

To renew an expired provisioning profile

1. In the Devices organizer, select Provisioning Profiles in the Library section.

2. In the provisioning profiles list, select the provisioning profile you want to renew.

3. Click Renew.

4. Enter your Apple ID user name and password, and click “Log in”.

If you installed the provisioning profile on your device, replace the expired provisioning profile with the renewed
provisioning profile.

To replace a provisioning profile

1. In the Library section in the Devices organizer, select Provisioning Profiles.

2. From the provisioning profiles list, drag the new provisioning profile to your device.

3. Delete the old provisioning profile from your device by selecting it and clicking Delete.

If the provisioning profile is an ad hoc provisioning profile, then re-sign and distribute your app using the
provisioning profile, as described in “Beta Testing Your iOS App” (page 117).

Downloading Provisioning Profiles from Member Center
If necessary, you can download specific provisioning profiles directly from Member Center.

To download a provisioning profile

1. In Certificates, Identifiers & Profiles, select Provisioning Profiles.

2. Under Provisioning Profiles, select All.

3. Select the ad hoc provisioning profile.

Best Practices for Maintaining Certificates and Provisioning Profiles
Renewing Expired Provisioning Profiles

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

180

http://developer.apple.com/account

4. Click Download.

A file with the provisioning profile name and the .mobileprovision extension appears in your
Downloads folder.

Re-Creating Certificates and Updating Related Provisioning Profiles
Re-creating certificates and updating related provisioning profiles is not a simple task because these assets
are related and reside on both your Mac and in Member Center. For example, if you remove a certificate from
Member Center, any provisioning profile that contains that certificate becomes invalid. Similarly, if you remove
a certificate from your Mac, Xcode attempts to download it again from Member Center the next time you
refresh your developer profile.

There are several reasons you might want to re-create your certificates and update related provisioning profiles.
For example, you do this if:

 ● You accidentally removed one or more private keys from your keychain and don’t have a backup to restore
from.

Best Practices for Maintaining Certificates and Provisioning Profiles
Re-Creating Certificates and Updating Related Provisioning Profiles

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

181

 ● You moved to another Mac for development and refreshed your certificates without first importing your
developer profile. In this case, the certificates are installed in your keychain but without the private keys.

 ● You want to remove revoked or expired certificates and their related provisioning profiles.

 ● You want to remove all the certificates and provisioning profiles from a previous team before you join
another team.

 ● If you use multiple Macs for development or belong to multiple teams, you might want to set up your
Mac for a new project.

However, if you are experiencing certificate, provisioning, or build issues, you should review
“Troubleshooting” (page 208) first before performing these steps because removing your certificates is irreversible.

Choose the certificates you want to re-create. For example, if you are experiencing problems running your app
on a device, you only need to re-create your development certificate. Keep in mind that re-creating a distribution
certificate doesn’t affect your development certificates or development provisioning profiles. Similarly, re-creating
a development certificate doesn’t affect your distribution certificate or distribution provisioning profiles.

Important: Re-creating your development or distribution certificates does not affect apps that you’ve
submitted to the store nor does it affect your ability to update them.

Follow these steps to re-create your certificates and update related provisioning profiles:

1. Remove the certificates and related provisioning profiles locally, as described in “Removing Certificates
from Your Keychain” (page 161).

2. Revoke the certificates using Member Center, as described in “Revoking Certificates” (page 164).

3. Request new certificates using Xcode, as described in “To verify that your device is registered” (page 43).

4. Modify custom provisioning profiles that contain the revoked certificates, as described in “Editing
Provisioning Profiles” (page 175).

You don’t need to modify team provisioning profiles after revoking development certificates, because
Xcode maintains them for you.

5. In Xcode, select “Refresh from Developer Portal” from the Editor menu, to refresh your provisioning profiles.

6. If necessary, install the modified provisioning profiles on your devices, as described in “Installing and
Removing Provisioning Profiles from Devices” (page 177).

If you are repairing multiple Macs, follow all these steps on the primary Mac. Then remove the certificates
locally on the other Mac and import the certificates on that Mac. Once the certificate has been repaired on the
primary Mac, export your developer profile. Then remove the certificates locally on all of the other Macs before
importing the certificates to those Macs.

Best Practices for Maintaining Certificates and Provisioning Profiles
Re-Creating Certificates and Updating Related Provisioning Profiles

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

182

If you have a backup (a file with a .developerprofile extension) and did not revoke the certificates, import
your certificates instead, as described in “Importing Your Developer Profile” (page 160).

Recap
In this chapter you learned how to maintain your certificates and provisioning profiles in a valid state and
remove assets that you no longer need. To resolve specific certificate and provisioning profile issues, read
“Troubleshooting” (page 208).

Best Practices for Maintaining Certificates and Provisioning Profiles
Recap

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

183

If you have a company membership in an Apple Developer Program, you can add people to your team and
assign them roles, thereby granting them levels of access to team assets. Team members have roles and
privileges that pertain to the development process. These roles define who is allowed to sign apps, who is
allowed to create signing certificates, and so on. After adding team members, you may be responsible for
performing other tasks on their behalf. For example, you may need to approve signing certificates and create
provisioning profiles for team members. If you are an individual, you are the team agent for your one-person
team and don’t need to perform any of the tasks described in this chapter.

Team members are not the same as iTunes Connect users. Only the person who joins the Apple Developer
Program initially has access to iTunes Connect. To learn how to add additional iTunes Connect users, read
“Managing Your App in iTunes Connect” (page 151).

About Apple Developer Program Team Roles and Privileges
A person’s role on the team defines the level of access he or she has to the team’s assets and types of tasks he
or she can perform using developer tools. This privilege level extends to the kinds of tasks that a developer is
allowed to perform on behalf of the team. For example, only certain members of the team are allowed to
submit apps to the store. By giving you control over team roles, Apple makes it easier for you to maintain good
security practices for the team.

If your team belongs to multiple developer programs, you can set different team roles for each program. You
can also choose not to give someone access to a program.

Team Roles
Table 13-1 lists the roles a person can play and describes each. Each level of access includes all the capabilities
of the levels below it.

Table 13-1 Team roles

DescriptionRole

A team agent is legally responsible for the team and acts as the primary contact with
Apple. The team agent can invite team members and change the access level of any
other team member. There is only one team agent.

Team agent

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

184

Managing Your Team

DescriptionRole

A team admin can set the privilege levels of other team members, except the team
agent. Team admins manage all assets used to sign your apps, either during
development or when your team is ready to distribute an app. Team admins are the
only people on a team who can sign apps for distribution on nondevelopment devices.
Team admins also approve signing certificate requests made by team members.

Team admin

A team member can gain access to prerelease content delivered by Apple in Member
Center. A team member can also sign apps during development, but only after he or
she makes a request for a development signing certificate and has that request
approved by a team admin.

Team
member

Team Privileges
Each team role defines a set of privileges or tasks that a person can perform. Table 13-2 drills deeper into this
list of privileges granted to members of the team. The privileges are listed in chronological order to help guide
you through the process. Refer to Table 12-1 (page 164) for the types of certificates that each team member
can revoke.

Table 13-2 Privileges assigned to each membership level

Team
member

Team
admin

Team agentPrivilege

Have legal responsibility for the team

Be the primary contact with Apple

View prerelease Apple content

Enroll in additional developer programs and renew
them

Invite team admins and team members

Request development certificates

Approve team member requests for development
certificates

Request distribution certificates

For Mac apps, request Developer ID certificates

Managing Your Team
About Apple Developer Program Team Roles and Privileges

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

185

Team
member

Team
admin

Team agentPrivilege

Add devices for development and testing

Create App IDs and enable store technologies

Create development and distribution provisioning
profiles

Create SSL certificates for Apple Push Notification
service

Download development provisioning profiles

Submit apps to the App Store or Mac App Store

Team Agent
To start, one person must enroll in either the iOS or the Mac Developer Program; this person becomes the
team agent for the team. The team agent may enroll in both programs if your team intends to develop apps
for both operating systems. During this step, the team agent signs the legal agreements required to become
an Apple developer and enters financial information so that the team can be paid for purchases of their app
from the store.

The team agent is special; he or she has unrestricted access to the team and is legally responsible for the team.
Initially, the team agent also performs most of the tasks to organize the team. After others have joined the
team, the team agent may decide to delegate some of this authority to other members of the team, allowing
those others to perform these tasks instead.

Important: Because the team agent has sole legal responsibility for the team, the team may not demote
the team agent using Member Center or iTunes Connect, nor can the team agent’s privileges be restricted.
To change the person acting as the team agent, you must contact Apple directly.

The team agent might need to sign updated or new licensing agreements, particularly when the team wants
to incorporate specific technologies into an app. For example, an app that uses the iAd service requires that
the team agent sign a separate agreement.

Managing Your Team
About Apple Developer Program Team Roles and Privileges

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

186

Before You Begin
You’ll use Member Center to perform most of the team management tasks. Before starting, sign in to Member
Center, as described in “Accessing Member Center” (page 16).

Inviting Team Members and Assigning Roles
If you enroll as a company, you are the de facto team agent who has permission to add other developers,
called team members , to your account. In general, team members have read access to view and download
information managed by Member Center—but they do not have write access. However, you can assign an
admin role to a team member, which allows that person to have some of the privileges of a team agent—for
example, a team admin can create signing certificates and provisioning profiles but can’t sign agreements.
Assigning roles helps team agents delegate some of their responsibilities.

Inviting Team Members
When you invite people to join your team, you enter information about them and set their role on the team.

To invite team members

1. In Member Center, click People in the tab bar at the top.

2. Click Invitations in the sidebar.

Managing Your Team
Before You Begin

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

187

https://developer.apple.com/membercenter
https://developer.apple.com/membercenter
https://developer.apple.com/membercenter

3. Click Invite Person.

4. Enter the first name, last name, and email address of the person you want to invite.

Managing Your Team
Inviting Team Members and Assigning Roles

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

188

5. Specify the person’s access and role for each program.

6. Click Send Invitation.

The person you specified receives an email invitation, which he or she must verify by clicking the
invitation code in it. If the person does not have an Apple ID, he or she is asked to create one before
accepting the invitation.

Changing Team Roles
After the team member accepts the invitation, the team agent receives a confirmation email and the team
member has access to Member Center. Later, the team agent can change the role of a team member.

To change a team member’s role

1. In Member Center, click People in the tab bar at the top.

2. Click All People in the sidebar.

3. Click Details in the last column in the row of the person whose role you want to change.

Managing Your Team
Inviting Team Members and Assigning Roles

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

189

https://developer.apple.com/membercenter

4. Specify the person’s access and role for each program, and click Save.

Important: Team members should belong to only one iOS or Mac Developer Program; otherwise, Xcode
displays information for multiple teams, which can be confusing.

Approving Development Certificates
If you are a team admin for a company, it is your responsibility to approve team member requests for
development certificates. Team members need a development certificate in order to sign apps, to use the
team provisioning profile, or to be added to other provisioning profiles. Team admins are notified via email
when a team member requests a development certificate. The email contains a link to Member Center to
approve the request.

To learn how to request development certificates using Xcode, read “Requesting Signing Certificates” (page
26). Team admins also use Xcode to request their own signing certificates, which are automatically approved.

Managing Your Team
Approving Development Certificates

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

190

Important: All developers on a team should keep a secure backup of their private key. If the private key
is lost, that team member can no longer sign code without creating a new code signing identity. After
approving a development certificate, the team admin or agent should remind the team member to export
his or her developer profile, as described in “Exporting Your Developer Profile” (page 159).

To approve a development certificate request

1. In Certificates, Identifiers & Profiles, select Certificates.

2. Under Certificates, select Pending.

3. Select the certificate.

4. Click either Decline or Approve.

If you use the team provisioning profile, you need to regenerate it after approving the certificate. Xcode
regenerates the team provisioning profile whenever a team member refreshes provisioning profiles in Xcode.
Afterward, all other team members need to refresh their provisioning profiles to download the latest team
provisioning profile.

Managing Your Team
Approving Development Certificates

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

191

http://developer.apple.com/account

Registering Team Member Devices
Before creating development provisioning profiles, team members need to register their devices. Team admins
can register their own devices using Xcode, as described in “Adding Devices to Your Team Provisioning
Profile” (page 40). A team member needs to send a request to a team admin to register his or her device. The
team member provides the device name and device ID to their team admin.

In Xcode, a team member can select the device in the Devices organizer to display the device ID. If you’re a
Mac developer, you can also get the device ID using the System Information app.

To locate your device ID using Xcode

1. Choose Window > Organizer.

2. Select your Mac in the Devices section.

3. Select and copy the text in the Identifier field.

To locate your Mac device ID using System Information

1. Open the System Information app located in the /Applications/Utilities folder.

Managing Your Team
Registering Team Member Devices

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

192

2. Select Hardware in the left column.

The device ID, or hardware UUID, appears near the bottom of the Hardware Overview pane and is of the
form XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX.

In Member Center, you can register one or more devices, as described in “Registering Devices Using Member
Center” (page 170).

Recap
In this chapter you learned how to perform some tasks on behalf of team members who don’t have privileges
to create development certificates or register their devices.

Managing Your Team
Recap

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

193

In some cases, you may want to distribute an application outside the Mac App Store. As that app won't be
distributed through the Mac App Store, use a Developer ID certificate to assure your users assurance that you
are an Apple-identified developer.

Mac users have the option of turning on Gatekeeper, a security feature that gives users the ability to install
software only from the Mac App Store and identified developers. If your application is not signed with a
Developer ID certificate issued by Apple, it will not launch on Macs that have this Gatekeeper option selected.
To avoid this situation, sign your applications and installer packages using a Developer ID certificate and
thoroughly test the end-user experience using a Gatekeeper-enabled Mac before distributing your application
outside of the Mac App Store.

This chapter describes the Xcode workflow to create and test Developer ID-signed applications for distribution
and provides links to more information for developers who use the command line for signing their applications
or installer packages.

Creating Developer ID-Signed Applications or Installer Packages
Creating a Developer ID-signed application or installer package is a multistep process. For most developers,
the entire Developer ID workflow takes place within Xcode. First you request Developer ID certificates. There
are two types of Developer ID certificates: a Developer ID Application is used to sign applications, and a
Developer ID Installer is used to sign installer packages. Using Xcode, you export and sign an archive of your
application using the Developer ID Application certificate. You can also use command-line utilities to sign an
installer package using the Developer ID Installer certificate.

Important: But before begin, enroll in the Mac Developer Program, as described in “Enrolling in an Apple
Developer Program” (page 15). Only Mac Developer Program members are eligible to request Developer
ID certificates and sign applications or installer packages using them.

Requesting Developer ID Certificates
Use the Xcode Organizer window to obtain the Developer ID Application and Developer ID Installer certificates.
You also need the Developer ID Certification Authority intermediate certificate, that Xcode installs in your
keychain for you, to use these certificates.

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

194

Distributing Applications Outside the Mac App
Store

When you refresh your certificates and provisioning profile assets for the first time, Xcode asks whether it
should create signing certificates on your behalf. Signing certificates that begin with the text “Developer ID”
are used to distribute your application outside the Mac App Store.

Note: Only a team agent can request Developer ID certificates. If you are an individual developer,
you are the team agent and can request these certificates. You need to contact
product-security@apple.com to revoke Developer ID certificates.

To request your Developer ID certificates

1. In Xcode, choose Window > Organizer to open the Organizer window.

2. Click Devices to display the Devices organizer.

3. Select “Refresh from Developer Portal” from the Editor menu.

Distributing Applications Outside the Mac App Store
Creating Developer ID-Signed Applications or Installer Packages

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

195

4. In the dialog that appears, enter your Apple ID user name and password, and click “Log in.”

After you log in to your account, multiple dialogs appear, asking whether Xcode should request certain
types of signing certificates on your behalf. If you just joined the Mac Developer Program, the first
dialog asks whether Xcode should request your Mac Development certificate. The last two dialogs ask
whether Xcode should request your Developer ID certificates.

5. Click the Submit Request button each time a certificate request dialog appears.

After you submit the last certificate request, allow the refresh process to complete. Your Developer ID
Application and Developer ID Installer certificates are added to your keychain.

6. In the dialog that appears at the end of the refresh process, asking whether you want to export your
developer profile, click Export.

Distributing Applications Outside the Mac App Store
Creating Developer ID-Signed Applications or Installer Packages

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

196

You should always back up your certificates after you create them. The private keys for your certificates
are stored in your keychain, and the public keys are stored in Member Center. As a result, you can’t
refresh your provisioning profiles and certificates in Xcode to replace a missing private key in your
keychain.

7. Enter a filename and password, and click Save.

Because the file contains your developer profile, which can be used to sign applications in your name,
it is encrypted and password protected. (You will need the password later to import your developer
profile to another Mac.)

Important: Your Developer ID private keys are valuable, and you should back them up. Exporting
your developer profile lets you create a password-protected backup. Save that backup as you would
any essential backup; for example, save it to a different disk. Later, if you need to replace a private
key, import it from your backup.

Your Developer ID Certification Authority intermediate certificate, which is required for Developer
ID code signing, is not exported. If you need to obtain another copy, retrieve it from Apple at
https://developer.apple.com/certificationauthority/DeveloperIDCA.cer.

Distributing Applications Outside the Mac App Store
Creating Developer ID-Signed Applications or Installer Packages

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

197

https://developer.apple.com/certificationauthority/DeveloperIDCA.cer

If you need to export your developer profile later, follow the steps in “Exporting Your Developer Profile” (page
159).

Verify Your Steps
To verify your steps, view your Developer ID certificates in your Teams folder in the Devices organizer.

Code Signing Your Application
Optionally, code sign your application during development and testing using the Developer ID Application
certificate. Later, you re-sign the application with this certificate when you archive and export it from Xcode.

To code sign an application with your Developer ID Application certificate

1. In the Xcode project editor, select the target.

Important: If you want to sign multiple targets with the same code signing identity, select the
project, not a target.

2. Select the Build Settings tab.

Distributing Applications Outside the Mac App Store
Creating Developer ID-Signed Applications or Installer Packages

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

198

3. Click All.

4. Type Code Signing in the search field in the Build Settings pane of the project editor.

The list of build settings now shows only the Code Signing settings.

5. From the Code Signing Identity pop-up menu, choose your Developer ID Application certificate.

6. Click Run.

Exporting a Developer ID-Signed Application
To export your application for distribution outside of the Mac App Store, use the Archives organizer.

To create a Developer ID-signed application

1. In Xcode, choose Product > Archive.

Xcode constructs an archive containing your code-signed application and opens the Organizer window,
showing the archive.

Note: You can set the Code Signing Identity build setting to any valid signing certificate during
this step because the archive is re-signed with the Developer ID certificate in a later step.

Distributing Applications Outside the Mac App Store
Creating Developer ID-Signed Applications or Installer Packages

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

199

2. Select the newly created archive in the Organizer window, and click Distribute.

3. In the dialog that appears, offering a choice of distribution methods, select “Export Developer ID-signed
Application” and click Next.

4. Choose your Developer ID certificate name from the Developer ID pop-up menu and click Next.

Distributing Applications Outside the Mac App Store
Creating Developer ID-Signed Applications or Installer Packages

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

200

If you are an individual developer, your name appears in the pop-up menu; otherwise, your company
name appears in the pop-up menu.

5. Enter a filename and location to save the signed application and click Save.

Signing an Installer Package
If you want to distribute your application outside the Mac App Store as part of an installer package, create the
package as you normally do. One way to create the installer package is to use the packagemaker(1)
command-line utility. Code sign the package with your Developer ID Installer certificate with the productsign
command. To test your installer package use the following command and replace MyPackageName.pkg the
filename of your package:

spctl -a -v --type install MyPackageName.pkg

Distributing Applications Outside the Mac App Store
Creating Developer ID-Signed Applications or Installer Packages

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

201

Warning: Make sure you sign the installer package using your Developer ID Installer certificate. The

productsign command-line utility allows you to sign an installer package using your Developer ID

Application certificate. Although this approach may appear to work, the resulting installer archive will

fail on the destination Mac.

If your development workflow includes code signing from the command line, read Code Signing Guide .

Verify Your Steps
Before you distribute your application, test the end-user experience by launching your application with
Gatekeeper enabled and disabled. You can enable and disable Gatekeeper using System Preferences or the
spctl(8) command-line utility. This command-line utility is also useful for testing. To simulate the end-user
experience, you need to quarantine your application and test it again with Gatekeeper enabled.

Enabling and Disabling Gatekeeper
You can turn on Gatekeeper by using the Security & Privacy system preferences or the spctl(8) command-line
utility for system policy control. Gatekeeper system preferences are hidden by default, but you can show them
using the spctl(8) command-line utility.

To enable or disable Gatekeeper using the Security & Privacy system preferences

1. In the Finder, launch System Preferences and select Security & Privacy.

2. Click the lock button if it appears locked, and enter the administrator password.

Distributing Applications Outside the Mac App Store
Verify Your Steps

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

202

3. To enable Gatekeeper, select “Mac App Store and identified developers.”

4. To disable Gatekeeper, select Anywhere.

To enable Gatekeeper using the spctl command

1. In Terminal, enter the following command:

$ spctl --master-enable

When prompted, enter your administrator password.

2. To confirm that Gatekeeper is enabled, enter the following command:

$ spctl --status

With Gatekeeper enabled, the previous command prints the following text in Terminal:

assessments enabled

Distributing Applications Outside the Mac App Store
Verify Your Steps

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

203

To disable Gatekeeper using the spctl command

1. In Terminal, enter the following command:

$ spctl --master-disable

When prompted, enter your administrator password.

2. To confirm that Gatekeeper is disabled, enter the following command:

$ spctl --status

With Gatekeeper disabled, the previous command prints the following text in Terminal:

assessments disabled

OS X v10.7 Note: Gatekeeper is available in OS X v10.7 and later. However, in OS X v10.7, the
Gatekeeper system preferences are hidden. To show Gatekeeper system preferences, enter the
following command in Terminal:

defaults write com.apple.systempreferences
ShowGatekeeperOptionsInSecurityPreferences -bool YES

To hide Gatekeeper system preference, enter this command in Terminal:

defaults write com.apple.systempreferences
ShowGatekeeperOptionsInSecurityPreferences -bool NO

Testing Gatekeeper Behavior
After signing your application with a Developer ID certificate, you can test whether it was signed correctly and
simulate the launch behavior of your application when Gatekeeper is enabled. On a Mac with Gatekeeper
enabled, a quarantined copy of your application launches only if it is Developer ID signed. (Learn about
quarantine in this Knowledge Base article.) You can also test the behavior of Gatekeeper for an application
that is not Developer ID signed.

Distributing Applications Outside the Mac App Store
Verify Your Steps

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

204

http://support.apple.com/kb/HT3662

Testing a Developer ID-Signed Application
You can use the spctl command-line utility to test whether your application is signed correctly using a
Developer ID certificate.

To test your Developer ID-signed application using spctl

1. Enable Gatekeeper on your test machine by entering the following command in Terminal:

$ spctl --master-enable

2. Enter the following command in Terminal by replacing TrackMix.appwith the path to your application.

$ spctl -a -v TrackMix.app

If the application is correctly signed, text similar to the following appears in Terminal:

./TrackMix.app: accepted

source=Developer ID

override=security disabled

Testing the Launch Behavior
To thoroughly test your Developer ID-signed application, simulate launching the application on a Mac not
used for development.

To prepare for testing Gatekeeper behavior

1. Enable Gatekeeper on your test machine (as described in “Enabling and Disabling Gatekeeper” (page
202)).

2. Quarantine a copy of your Developer ID-signed application. You can do this in either of the following
ways:

 ● Email your Developer ID-signed application to yourself and use the copy that Mail downloads.

 ● Host your Developer ID-signed application on your own local or remote server and use the copy
that Safari downloads.

You are ready to test Gatekeeper behavior.

Distributing Applications Outside the Mac App Store
Verify Your Steps

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

205

To test Gatekeeper behavior for your Developer ID-signed application

 ● In the Finder, locate the quarantined copy of your Developer ID-signed application and double-click
its icon.

The Mac displays an alert asking whether you are sure you want to open the application.

This alert, which allows you to open the quarantined application with Gatekeeper enabled, confirms
that your Developer ID workflow is correct.

Tip: If you do not see an alert at this point, it is likely that you have opened a nonquarantined copy of
your application. Review the steps in “To prepare for testing Gatekeeper behavior” (page 205).

To test Gatekeeper behavior for blocking applications that are not Developer ID signed

1. Enable Gatekeeper on your test machine (as described in “Enabling and Disabling Gatekeeper” (page
202)).

2. Quarantine a copy of your application that is not Developer ID signed.

As before, you can invoke quarantine on this copy of your application in either of the following ways:

 ● Email your application to yourself and use the copy that Mail.app downloads.

 ● Host your Developer ID-signed application on your own local or remote server and use the copy
that Safari downloads.

3. In the Finder, locate the quarantined copy of your non-Developer ID-signed application and double-click
its icon.

Distributing Applications Outside the Mac App Store
Verify Your Steps

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

206

The Mac displays an alert that blocks you from opening the application. By way of this alert, Gatekeeper
protects a Mac by preventing first-time opening of applications from unidentified developers.
Applications previously opened by a user are no longer quarantined, and Gatekeeper does not prevent
them from launching.

Recap
This chapter showed you how to distribute your Mac application outside of the Mac App Store so that users
won’t block your app from launching.

Distributing Applications Outside the Mac App Store
Recap

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

207

Just as troubleshooting is a part of every complex technical process, it is a necessary part of developing, testing,
submitting, and releasing an app. The potential problems you may encounter are organized here in four general
areas—certificates, provisioning, building, and debugging—with each problem followed by specific advice.
Use this chapter as a reference to find solutions to the problems you might encounter.

Certificate Issues
Before you re-create a certificate that has become invalid or unusable, see whether it has one or more of the
following common problems.

Your Provisioning Profile Doesn’t Appear in the Code Signing Identity Menu
If your provisioning profile doesn’t appear in the Code Signing Identity menu (in the Build Settings pane of
the project editor in Xcode), first refresh provisioning profiles in Xcode. If your provisioning profile still doesn’t
appear, select Don’t Code Sign or a certificate under Automatic Profile Selector from the Code Signing Identity
menu. The next time you select the Code Signing Identity menu, your provisioning profile should appear in
the menu. If it still doesn’t appear, quit and relaunch Xcode.

Duplicate Provisioning Profile Appear in the Devices Organizer
If duplicate valid provisioning profiles appear in the Devices organizer in Xcode, delete all the provisioning
profiles in the Devices organizer and refresh provisioning profiles in Xcode. If duplicate provisioning profiles
still appear, sort the provisioning profiles by expiration date and delete the older versions of the duplicates.

Your Certificates Are Invalid Because You’re Missing Private Keys
Certificates might be invalid because the corresponding private key is not in your keychain. Try to restore your
missing private keys from a developer profile backup, as described in “Exporting and Importing Certificates
and Provisioning Profiles” (page 159). If you cannot retrieve your private keys from another Mac, refer to
“Re-Creating Certificates and Updating Related Provisioning Profiles” (page 181) to re-create all your certificates.
You can perform these steps for one or more invalid certificates.

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

208

Troubleshooting

Your Developer ID Certificates Are Invalid Because You’re Missing Private Keys
Follow the same steps in “Your Certificates Are Invalid Because You’re Missing Private Keys” (page 208) to repair
Developer ID certificates, except contact Apple at product-security@apple.com if you need to revoke
Developer ID certificates. Alternatively, you can continue to develop and distribute applications by requesting
additional Developer ID certificates as described in “Requesting Additional Developer ID Certificates” (page
168).

Your Certificates Are Invalid Because You’re Missing an Intermediate Certificate
If your certificates are invalid, you could be missing the intermediate certificate used to authenticate your
certificate. If you verify your certificate in Keychain Access (see “To verify that your device is registered” (page
43)) and instead of a green circle with a checkmark, a red circle with a white X appears with the status “This
certificate was signed by an unknown authority,” you are missing the intermediate certificate. If you do not
have a certificate called Apple Worldwide Developer Relations Certification Authority in your system keychain,
read “Installing Missing Intermediate Certificate Authorities” (page 167) to learn how to reinstall it. The
intermediate certificate for Developer ID certificates is called the Developer ID Certification Authority .

Your Certificates Have Trust Issues
If you view your certificate in Keychain Access, and a blue circle and white plus sign appear in the detail area
instead of a green circle with a checkmark, your certificate has trust issues. To learn how to fix this problem,
read “Xcode Doesn’t Trust Your Certificate” (page 211).

Your Certificates Have Expired
You cannot renew expired certificates. Read “Replacing Expired Certificates” (page 166) for how to remove the
expired certificates and request new ones.

Mac Note: If your Developer ID certificates expire, users can still download, install, and run versions
of your Mac applications that were signed with these certificates. However, you will need new
Developer ID certificates to sign updates and create new applications.

You’re Missing Signing Certificates
Your signing certificates may be missing from your keychain because you never requested them or because
you moved to a Mac on which you haven’t developed apps before.

If you never requested your certificates (there are none in your keychain), refresh the provisioning profiles in
Xcode to request them, as described in “To verify that your device is registered” (page 43).

Troubleshooting
Certificate Issues

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

209

If you moved to a new Mac, export your certificates as a developer profile file on the Mac you first requested
the certificates from, and then import them on your new Mac, as described in “Exporting and Importing
Certificates and Provisioning Profiles” (page 159).

If you no longer have access to the other Mac or user account and you did not keep a backup of your certificates,
refer to “Re-Creating Certificates and Updating Related Provisioning Profiles” (page 181) to re-create all of your
certificates.

You Have Duplicate Certificates
If you have other certificates in your keychain from other accounts, you should remove them, as described in
“Your Developer ID Certificates Are Invalid Because You’re Missing Private Keys” (page 209). You should have
only one of each type of certificate. Duplicates may cause problems when you attempt to sign your app. For
a list of the certificate types, refer to Table 2-1 (page 36).

Provisioning Issues
Common provisioning issues result from using the wrong provisioning profile with your app or using an invalid
or expired provisioning profile.

Xcode Cannot Install Your App on Your Development Device
If Xcode cannot install your app on your development device because of a problem with the provisioning
profile you’re using with the app, ensure that the provisioning profile is properly configured in your development
team’s signing assets. To configure provisioning profiles, see “Configuring Store Technologies in Xcode and
iTunes Connect” (page 79).

Your Provisioning Profile Has Expired
If the provisioning profile stored on the development device for your app has expired, Xcode won’t be able
to install the app on that device. Replace the expired provisioning profile as described in “Renewing Expired
Provisioning Profiles” (page 180).

Build and Code Signing Issues
Common build errors tend to involve incorrect code signing identities. For iOS apps, your device might not
appear in the run destination menu.

Troubleshooting
Provisioning Issues

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

210

Xcode Cannot Find Your Provisioning Profile
You will receive the following error message after replacing a provisioning profile with a modified version,
such as when a provisioning profile’s App ID changes:

Code Sign error: Provisioning Profile 'xxxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxx' can’t
be found

To address this error, ensure that the correct provisioning profile and code signing identity are selected for
the value of the Code Signing Identity build setting. This error may also occur if the project’s and target’s Code
Signing Identity build settings are different. See “Signing Your App Using Your Development Provisioning
Profile” (page 71).

Xcode Doesn’t Trust Your Certificate
You get this error message when Xcode cannot verify the authenticity of your development or distribution
certificate:

Code Sign error: CSSMERR_TP_NOT_TRUSTED

If the trust setting is not Use System Defaults, you will receive a CSSMERR_TP_TRUSTED error message from
the codesign command-line utility when you build and run your app. Do not change the trust settings of
your certificates from the default Use System Defaults. Follow these steps to repair your development,
distribution, and intermediate certificates.

To set the trust level of a certificate to the system defaults

1. Launch Keychain Access.

2. In the Category section, select My Certificates.

3. Double-click the certificate.

4. In the certificate window, display the Trust section by clicking the corresponding disclosure triangle.

5. For the option “When using this certificate,” select Use System Defaults.

6. Close the certificate window.

7. Ensure that the certificate information shows the certificate is valid.

The Code Signing Identity Build Setting Doesn’t Match Any Certificates
You will receive the following error message when your certificate has expired or is otherwise invalid:

Troubleshooting
Build and Code Signing Issues

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

211

Code Signing Identity 'iPhone Developer' doesn't match any valid, non-expired,
certificate/private key pair in your keychain.

For multiple targets that use the same code signing identity, you should set this build setting at the project
level, not the target. However, if it is set on both the project and the target, the target setting overrides the
project setting. If the target’s Code Signing Identity build setting is set, delete it by first selecting it and then
choosing Edit > Delete. Finally, set the project’s Code Signing Identity build setting to your certificate.

If your development certificate or team provisioning profile doesn’t appear in the Code Signing Identity menu,
try refreshing the provisioning profiles and choose a valid code signing identity as described in “Code Signing
Your App Using the Team Provisioning Profile” (page 49) or “Signing Your App Using Your Development
Provisioning Profile” (page 71).

To refresh provisioning profiles

1. In Xcode, open the Devices organizer.

2. Select Provisioning Profiles under Library.

3. Click Refresh at the bottom of the window.

Your Keychain Contains Duplicate Code Signing Identities
You get one of these error messages when there are duplicate code signing identities in your keychain, such
as two development identities or two distribution identities (your keychain must contain at most one code
signing identity of each type):

Build error "iPhone Developer: <your_name> (XYZ123ABC): ambiguous (matches "iPhone
Developer: <your_name> (XYZ123ABC)" in /Library/Keychains/System.keychain and
"iPhone Developer: <your_name> (XYZ123ABC)" in
/Users/../Library/Keychains/login.keychain)"

[BEROR]CodeSign error: Certificate identity 'iPhone Distribution: <your_name>'
appears more than once in the keychain. The codesign tool requires there only be
one.

To address these errors, first try deleting the duplicate code signing identities from your keychain. If that
approach doesn’t work, follow the steps in “Importing Your Developer Profile” (page 160).

Troubleshooting
Build and Code Signing Issues

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

212

The App ID of Your Provisioning Profile Doesn’t Match Your App’s Bundle Identifier
When there’s a conflict between the App ID in the provisioning profile selected in the Code Signing Identity
build setting and your app’s bundle identifier, you get error messages similar to the following:

Code Sign error: Provisioning profile 'MyApp Profile' specifies the Application
Identifier 'com.mycompany.MyApp.*' which doesn't match the current setting
'com.mycompany.MyApp'

To address these errors, ensure that your bundle identifier is set correctly in your Xcode project, that the
certificate and provisioning profile specified in the Code Signing Identity build setting is correct, and that the
provisioning profile uses the correct App ID.

Device Is Not Listed as a Run Destination
If you have a project or workspace open and your connected device is not listed as a run destination in the
Scheme toolbar menu, verify that:

1. The app’s targeted iOS version is equal to or greater than the iOS version installed on your device. See
“Setting the Target iOS Devices” (page 105) for details.

2. Your device contains a valid provisioning profile.

3. The version number of the iOS SDK your project uses is equal to or greater than the version number of
the iOS version on your device.

For example, if Xcode shows iOS SDK 4.3 but your device has iOS 5.0 installed, you need to install on your
Mac an Xcode version that includes iOS SDK 5.0.

Debugging Information Issue
The most common potential problem with debugging is that Xcode has not yet collected the information from
your device.

Xcode Displays the Unknown iOS Detected Dialog When You Connect a Device
This message appears when Xcode hasn’t seen a particular version of iOS before and needs to download (from
the device) the debugging symbols for that version from the device. To successfully debug apps on the device,
leave the device connected until Xcode finishes downloading the debugging symbols from the device.

Troubleshooting
Debugging Information Issue

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

213

This table describes the changes to App Distribution Guide .

NotesDate

Applied minor edits throughout.2013-04-23

New document that describes the common workflows to develop, test,
and distribute your app.

2013-04-05

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

214

Document Revision History

ad hoc provisioning profile A type of distribution
provisioning profile used for distributing an iOS app
for testing.

App ID A string that identifies one or more apps
from a single team. An App ID consists of a bundle
ID search string preceded by the Team ID, a
10-character string generated by Apple to uniquely
identify a team.

Apple Developer Program Subscription services
that offer Apple developers access to technical
resources and support to develop apps for the App
Store and Mac App Store. Developers can join one
or more of the separate programs for iOS, Mac, and
Safari development.

Apple ID An Apple-issued developer account with
a name and password. Developers use their Apple
ID credentials to sign in to any of the developer
program tools. A developer or Apple ID can belong
to multiple teams, and teams can belong to multiple
types of developer programs.

Apple Push Notification service (APNs) The service
(servers and other infrastructure) that Apple provides
to allow developers to push notifications to apps. A
message sent by the service is called a push
notification.)

Apple Worldwide Developer Relations Certification
Authority The certificate authority that validates
development and distribution certificates for apps
submitted to the App Store and the Mac App Store.

App Store A service for purchasing and
downloading iOS apps. The App Store is available
on iOS devices, and in the iTunes Store on Mac and
Windows computers.

bundle ID A reverse DNS string that precisely
identifies a single app.

bundle ID search string The second part of an App
ID that is supplied by developers to match a set of
bundle IDs, where each bundle ID identifies a single
app. For example, if the bundle ID search string is
com.mycompany.MyApp or a wildcard such as
com.mycompany.*, then it will match the bundle
ID com.mycompany.MyApp.

certificate authority An organization that
authorizes a certificate.

certificate signing request (CSR) A file that contains
personal information used to generate a signing
certificate. This file also contains the public key to
be included in the certificate, along with identifying
information.

Certificates, Identifiers & Profiles An area of the
Member Center available to iOS, Mac, and Safari
Developer Program members that provides resources
needed to develop iOS and Mac apps and Safari
Extensions.

client SSL certificate A certificate that allows a
developer’s server to connect to an Apple service.
For example, developers use a client SSL certificate
to communicate with the Apple Push Notification
service.

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

215

Glossary

code signing certificate A signing certificate used
to sign an app or installer.

code signing identity A digital identity used for
code signing, including archive signing. A code
signing identity includes the certificate with its
private and public keys.

company A type of Apple Developer Program
account that has one or more team members.

crash report A report generated by the operating
system when an app crashes.

data protection A digital safeguard that adds a
level of security to files stored on disk by an app.

Developer ID The name of the feature that
developers use to distribute code-signed
applications outside the Mac App Store.

developer profile A file that contains a developer’s
development certificates, distribution certificates,
and provisioning profiles.

development certificate A type of signing
certificate used during development that identifies
a single developer on a team. It allows an app to
launch on a device through Xcode.

development provisioning profile A type of
provisioning profile that authorizes an app to use
certain technologies and run on designated devices
during development. This profile consists of a name,
multiple development certificates, multiple devices,
and an App ID.

device Used to refer to a Mac computer—or to an
iPad, iPhone, or iPod—when no further distinction
between them is needed.

device ID A way of uniquely identifying an iOS or
Mac device.

distribution certificate A type of signing certificate
used to distribute an app and allow it to launch on
a device without the assistance of Xcode. A
distribution certificate identifies a team, not a team
member.

distribution provisioning profile A type of
provisioning profile that authorizes an app to run
on devices without the assistance of Xcode and
allows them to use certain technologies. A
distribution provisioning profile is used to submit
an app to the App Store or Mac App Store. Mac has
one type of distribution provisioning profile, and iOS
has two.

entitlement A single right granted to a particular
app, tool, or other executable that gives it additional
permissions beyond what it would ordinarily have.

explicit App ID An App ID that matches a single
bundle ID, in contrast to a wildcard App ID, which
can match one or more bundle IDs.

Game Center Apple’s social gaming network that
allows players to connect to the service and
exchange information with other players.

Gatekeeper The OS X feature that enables users to
choose to disallow the launching of applications that
are not code signed by developers known to Apple.

iCloud A type of storage that allows developers to
share a user’s data among multiple instances of an
app running on other iOS and Mac OS X devices.

In-App Purchase A mechanism for embedding
items to purchase directly into an app. In this way,
a developer can connect to the App Store or Mac
App Store and securely process payments from the
user.

individual Used to describe a type of Apple
Developer Program account that has one developer.

Glossary

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

216

intermediate certificate A certificate that is
required to be in a developer’s keychain to ensure
that a signing certificate is issued by a trusted source.

iOS App Store Package A type of OS X file that,
when double-clicked installs an app in iTunes, where
it can be synced to an iOS device.

iOS Dev Center An Apple developer center that
provides all the resources needed to develop iOS
applications.

iOS Developer Program A program that allows
developers to develop iOS apps, test them on
iOS-based devices, and distribute them to users.

Mac Developer Program A program that allows
developers to develop Mac apps, and distribute them
to users.

Mac Installer Package A type of OS X file that, when
double-clicked, launches the Installer and installs a
Mac app on a computer.

Newsstand An iOS app for purchasing and
organizing newspaper and magazine subscriptions
into a folder.

Passbook An iOS app for organizing and using
passes, tickets, and coupons.

passes Digital representations of information that
allow users to redeem a real-world product or
service, such as a coupon, a ticket for a show, or a
boarding pass.

provisioning The process of preparing and
configuring an app to launch on devices and use
certain services.

provisioning profile A type of system profile used
to provision one or more apps.

push notification A message sent from an app, that
is not running in the foreground, to the user using
Apple Push Notification service (APNs).

quarantine The state of a file or an application that,
when a user first attempts to open the item, triggers
the Gatekeeper feature. OS X imposes a quarantine
on items downloaded from the web, from email, and
so on.

routing app An app that offers routing information,
such as turn-by-turn navigation services. An app can
register as a routing app and make those directions
available to Maps and other apps.

signing certificate A certificate used for signing
other entries, such as installer packages, email
messages, and the like.

store Used as a short form of the App Store or the
Mac App Store when there is no distinction between
the two.

symbolicate To replace memory addresses in a
crash report with human-readable function names
and line numbers.

team admin A person on a development team who
has some of the privileges of a team agent but can't
sign agreements. Team admins help team agents
delegate some of their responsibilities. Compare
team agent; team member.

team agent The person on a development team
who has unrestricted access to the team and who is
legally responsible for it. Compare team admin; team
member.

Team ID A 10-character string that is generated by
Apple to uniquely identify your team. The Team ID
is used as the prefix for an App ID.

Glossary

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

217

team member A person on a development team
who has the fewest privileges. A team member can
can sign apps during development after that request
is approved by a team admin. Compare team agent;
team admin.

team provisioning profile The development
provisioning profile that Xcode creates and manages
for you. The team provisioning profile contains all
of a team’s development certificates, its registered
devices, and the wildcard App ID, which Xcode also
creates.

wildcard App ID An App ID that matches one or
more bundle IDs used by a development team.
Compare explicit App ID.

Xcode iOS Wildcard App ID The wildcard App ID
that Xcode manages for iOS developers.

Xcode Mac Wildcard App ID The wildcard App ID
that Xcode manages for Mac developers.

Glossary

2013-04-23 | © 2013 Apple Inc. All Rights Reserved.

218

Apple Inc.
© 2013 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any
form or by any means, mechanical, electronic,
photocopying, recording, or otherwise, without
prior written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a single
computer for personal use only and to print
copies of documentation for personal use
provided that the documentation contains
Apple’s copyright notice.

No licenses, express or implied, are granted with
respect to any of the technology described in this
document. Apple retains all intellectual property
rights associated with the technology described
in this document. This document is intended to
assist application developers to develop
applications only for Apple-labeled computers.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, eMac, Finder, Instruments,
iPad, iPhone, iPhoto, iPod, iPod touch, iTunes,
Keychain, Mac, Mac OS, Mac Pro, OS X, Passbook,
Safari, Sand, Spotlight, and Xcode are trademarks
of Apple Inc., registered in the U.S. and other
countries.

Retina is a trademark of Apple Inc.

.Mac, iAd, iCloud, and iTunes Store are service
marks of Apple Inc., registered in the U.S. and
other countries.

App Store and Mac App Store are service marks
of Apple Inc.

iOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS PROVIDED
“AS IS,” AND YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if advised of
the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple dealer,
agent, or employee is authorized to make any
modification, extension, or addition to this warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have other
rights which vary from state to state.

	App Distribution Guide
	Contents
	Figures and Tables
	Introduction
	Enrolling in an Apple Developer Program and Accessing Its Tools
	Enrolling in an Apple Developer Program
	You Enroll as an Individual or a Company
	You Can Join Multiple Teams
	Emails from Apple Contain Further Instructions and Welcome You

	Accessing Member Center and iTunes Connect
	Accessing Member Center
	Managing Your Certificates, Identifiers, and Profiles
	Accessing iTunes Connect
	Bookmarking the Web Tools

	Recap

	Creating Your Signing Certificates
	About Code Signing
	Requesting Signing Certificates
	Verify Your Steps
	Verify Using Xcode
	Verify Using Keychain Access
	Verify Using Member Center

	Troubleshooting

	Your Signing Certificates in Depth
	Recap

	Developing Apps Using the Team Provisioning Profile
	About the Team Provisioning Profile
	Adding Devices to Your Team Provisioning Profile
	Registering and Provisioning an iOS Device Using Xcode
	Registering and Provisioning a Mac Using Xcode
	Verify Your Steps
	Verify That Your Device Was Registered and Added to the Team Provisioning Profile
	Verify That Your Team Provisioning Profile Is Installed on Your Device

	Troubleshooting

	Code Signing Your App Using the Team Provisioning Profile
	Troubleshooting

	Launching Your iOS App on the Device
	Troubleshooting

	Recap

	Provisioning Your App for Store Technologies
	About Development Provisioning Profiles
	Before You Begin
	Creating App IDs
	Registering an App ID

	Enabling Store Technologies
	Creating Development Provisioning Profiles
	Regenerating the Provisioning Profile
	Regenerating the Team Provisioning Profile
	Regenerating Provisioning Profiles Managed By You

	Provisioning Your Development Devices
	Refreshing Your Provisioning Profiles Using Xcode
	Updating Provisioning Profiles on Your Device

	Setting the Bundle ID to Match Your App ID
	Signing Your App Using Your Development Provisioning Profile
	Verify Your Steps
	Verify Code Signing
	Verify the App ID Settings in Member Center

	Troubleshooting
	Troubleshooting Code Signing Errors
	Troubleshooting Failure to Launch

	Development Provisioning Profiles in Depth
	Recap

	Configuring Store Technologies in Xcode and iTunes Connect
	About Entitlements
	Configuring iCloud
	Enabling iCloud Entitlements
	Configuring iCloud Key-Value Storage
	Configuring iCloud Document Storage

	Configuring Push Notifications
	Creating Push Notification Client SSL Certificates
	Installing Client SSL Certificates

	Configuring Game Center
	Configuring In-App Purchase
	Configuring Passbook for iOS Apps
	Configuring Data Protection for iOS Apps
	Configuring Routing Apps for iOS Apps
	Providing Routing Directions
	Enabling Routing Apps in Xcode
	Creating an App Record in iTunes Connect
	Submitting a Binary to the Store
	Uploading the Geographic Coverage File to iTunes Connect

	Configuring Newsstand for iOS Apps
	Verify Your Steps
	Recap

	Configuring Your Xcode Project for Distribution
	About Bundle IDs
	Before You Begin
	Setting Properties When Creating Your Xcode Project
	Configuring Application Target Settings
	Setting the Mac Application Category
	Setting the Bundle ID
	Setting the Version Number and Build String
	Setting the Target iOS Devices
	Setting the Deployment Target

	Adding App Icons and Launch Images
	Setting App Icons
	Creating and Setting iOS Launch Images
	Capturing Screenshots on Your Device and Setting Launch Images Directly in Xcode
	Capturing Screenshots Directly on Your Device
	Setting Launch Images in the Project Editor

	Configuring Entitlements
	Configuring App Sandbox for Mac Apps
	Editing the Information Property List
	Setting the Copyright Key for Mac Apps

	Specifying Build Settings
	Setting Architectures for iOS Apps
	Setting the Base SDK
	Setting the Debug Information Format for Mac Apps

	Recap

	Beta Testing Your iOS App
	About Ad Hoc Provisioning Profiles
	Creating Your App Record in iTunes Connect
	Registering Test Devices
	Creating Distribution Certificates
	Verify Your Steps

	Creating Ad Hoc Provisioning Profiles
	Archive and Validate Your App
	Code Signing Your App
	Troubleshooting

	Review the Archive Scheme Settings
	Creating and Validating an Archive
	Troubleshooting

	Creating an iOS App Store Package
	Troubleshooting

	Installing Your App on Test Devices
	Soliciting Crash Reports from Testers
	Ad Hoc Provisioning Profiles in Depth
	Recap

	Analyzing Crash Reports
	Submitting Your App
	About Store Provisioning Profiles
	Before You Begin
	Creating Distribution Certificates
	Verify Your Steps

	Creating Store Provisioning Profiles
	Downloading the Distribution Provisioning Profile
	Verify Your Steps

	Archiving and Validating Your App
	Code Signing Your App
	Troubleshooting

	Review the Archive Scheme Settings
	Creating and Validating an Archive
	Troubleshooting

	Test the Mac Installer Package
	Submitting Your App Using Xcode
	Submitting Your iOS App
	Submitting Your Mac App
	Troubleshooting

	Recap

	Releasing and Updating Your App
	Recap

	Managing Your App in iTunes Connect
	About iTunes Connect User Roles and Privileges
	Adding iTunes Connect Users
	Creating an App Record
	Viewing the Status of Your App
	Changing the Availability Date of Your App
	Viewing Crash Reports
	Viewing Customer Reviews
	Creating New Versions of Your App
	Recap

	Best Practices for Maintaining Certificates and Provisioning Profiles
	About Protecting Your Code Signing Identities
	Exporting and Importing Certificates and Provisioning Profiles
	Exporting Your Developer Profile
	Importing Your Developer Profile

	Removing Certificates from Your Keychain
	Revoking Certificates
	Replacing Expired Certificates
	Installing Missing Intermediate Certificate Authorities
	Requesting Additional Developer ID Certificates
	Registering App IDs
	Deleting App IDs
	Registering Devices Using Member Center
	Locating Device IDs
	Registering Individual Devices
	Registering Multiple Devices
	Creating a Property List Devices File
	Creating a Plain Text Devices File
	Uploading the Devices File

	Editing Provisioning Profiles
	Installing and Removing Provisioning Profiles from Devices
	Removing Provisioning Profiles from Your Team
	Renewing Expired Provisioning Profiles
	Downloading Provisioning Profiles from Member Center
	Re-Creating Certificates and Updating Related Provisioning Profiles
	Recap

	Managing Your Team
	About Apple Developer Program Team Roles and Privileges
	Team Roles
	Team Privileges
	Team Agent

	Before You Begin
	Inviting Team Members and Assigning Roles
	Inviting Team Members
	Changing Team Roles

	Approving Development Certificates
	Registering Team Member Devices
	Recap

	Distributing Applications Outside the Mac App Store
	Creating Developer ID-Signed Applications or Installer Packages
	Requesting Developer ID Certificates
	Verify Your Steps

	Code Signing Your Application
	Exporting a Developer ID-Signed Application
	Signing an Installer Package

	Verify Your Steps
	Enabling and Disabling Gatekeeper
	Testing Gatekeeper Behavior
	Testing a Developer ID-Signed Application
	Testing the Launch Behavior

	Recap

	Troubleshooting
	Certificate Issues
	Your Provisioning Profile Doesn’t Appear in the Code Signing Identity Menu
	Duplicate Provisioning Profile Appear in the Devices Organizer
	Your Certificates Are Invalid Because You’re Missing Private Keys
	Your Developer ID Certificates Are Invalid Because You’re Missing Private Keys
	Your Certificates Are Invalid Because You’re Missing an Intermediate Certificate
	Your Certificates Have Trust Issues
	Your Certificates Have Expired
	You’re Missing Signing Certificates
	You Have Duplicate Certificates

	Provisioning Issues
	Xcode Cannot Install Your App on Your Development Device
	Your Provisioning Profile Has Expired

	Build and Code Signing Issues
	Xcode Cannot Find Your Provisioning Profile
	Xcode Doesn’t Trust Your Certificate
	The Code Signing Identity Build Setting Doesn’t Match Any Certificates
	Your Keychain Contains Duplicate Code Signing Identities
	The App ID of Your Provisioning Profile Doesn’t Match Your App’s Bundle Identifier
	Device Is Not Listed as a Run Destination

	Debugging Information Issue
	Xcode Displays the Unknown iOS Detected Dialog When You Connect a Device

	Revision History
	Glossary

